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ABSTRACT 
Recently enterprises have been able to leverage two revolutionary 
new tools for gaining a competitive advantage for their business – 
cloud computing and analytic applications.  Cloud computing 
unburdens them from running and maintaining their compute 
resources, whereas analytic applications comb through their big 
data to provide new insights for a competitive advantage in the 
market.  Analytic applications are carefully tailored to their target 
problems.  While there is a lot of work published on both the 
mechanics of cloud computing as well as analytic methods for 
distilling insights from a variety of data, there is little work 
available about the cloud influence on the analytics platforms 
which aim at lowering the barrier for the creation, deployment, 
scaling and maintenance of next generation analytic workloads. 
This paper discusses the challenges we are facing today in order 
to provide an analytics platform to reduce cost and increase 
performance of analytics applications in the cloud computing 
environment.  
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1. INTRODUCTION 
Cloud computing is a new compute platform that offers agility, 
elasticity and cost savings. The main attributes of cloud 
computing are scalable, on-demand computing resources 
delivered over the network, and pay-per-use pricing. This offers 
flexibility to end user in exploiting as many resources as needed 

at any point in time without investing in huge infrastructure and 
management costs. 

The enterprises using proprietary IT structure need to manage and 
maintain these machines, consuming a significant amount of their 
available IT budget (can be up to 80%), just to keep status quo. 
Many enterprises are moving from the proprietary IT structure 
towards pay-as-you-go model computing. They are opting for 
commodity hardware available in public or private clouds, being 
operated by a third party. 

The utility business model frees up their IT budget allowing 
corporations the flexibility to scale up their operations as they 
need it, and reducing their operational risks. This offers flexibility 
in using as few or as many IT resources as needed at any point in 
time. Thus, users do not need to predict future resources they 
might need, and to commit to hardware capital investments in 
advance.  This is especially advantageous for start-ups, and small 
and medium businesses which might otherwise not be able to 
afford the IT infrastructure they need to support their growing 
business. At the same time, redirecting capital investment from IT 
infrastructure to the core business is attractive even for large and 
financially strong businesses. 

The term analytics is used for mathematical or scientific methods 
that discover new insights based on data, which is typically 
unstructured.  The amount of unstructured data that can be mined 
to generate business value is exploding, reaching as much as 
exabytes daily. Usage of analytics to provide new insights out of 
collected big data in order to make better business decisions gives 
companies a competitive advantage.  

Insights given by analytics evolved from analyzing engineering-
based processes, such as product design and manufacturing, into 
optimization of logistic processes such as supply chain operations, 
and to human centric processes such as workforce management. 
Analytics is becoming an important part in the decision making 
process of enterprises, and the competitive advantage it gives 
them drives increasing demand.   
The industry has seen analytic workloads emerging in many 
different forms.  We are bringing here a taxonomy to capture their 
nature:  

• Passive Analytics: Analytic workloads are designed and 
deployed on top of a dataset which is acquired and 
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maintained for a primary traditional workload. An example 
of a passive analytic workload would be analytics deployed 
on transactional bank data in order to determine usage 
patterns which may point to the likelihood of a client’s 
interest in additional financial products.  In this example, the 
primary reason for the dataset is the transactional workload 
of the bank, but the analytic results may provide insights 
which could be used in direct marketing efforts. 

• Decision support and business intelligence: This type of 
analytic workloads usually answers critical business 
questions providing summarized facts or deep analytical 
insights such as revenue forecasting, predictive modeling, 
loyalty / churn  analysis 

• Operational Efficiency Analytics: The industry currently 
have the ability to monitor, collect, and store more data 
about our operations than ever before.  Many process and 
operations owners have designed and built operational 
efficiency analytic workloads to model their processes and 
determine factors for optimization and troubleshooting.   

• Analytic Solutions: End-to-end analytics solutions attempt 
to solve a mathematic or scientific problem using data 
collected for the purpose of solving the problem. One 
example of these analytics applications is a smarter planet 
solution which combines data from sensors (e.g., windmills) 
and from several mathematical models (e.g., weather forecast 
and an energy consumption model) to achieve optimal 
control and management of resources such as a power plant.  

The elasticity and agility of cloud infrastructure, its flexibility to 
provide virtually unlimited resources in the cloud when needed at 
low cost has a potential to radically change how analytics 
applications on big data are built. Analytics application 
developers are focusing on the problem they are solving, and not 
on building analytics platform in the cloud in order to reduce the 
amount of programming needed for the development of analytics 
applications.  

In this paper, we look at the trends and discuss the challenges we 
are facing today in order to provide an efficient platform for 
analytics developers. An analytics platform would reduce 
complexity involved in developing a new analytics application, 
would reduce amount of coding needed and with it their cost and 
time needed for development, and would increase performance of 
analytics applications in cloud computing environments, enabling 
real time analytics.  We look into the existing analytics algorithms 
and compute methods, and into novel trends and compute 
methods in the cloud environment. In order to provide an 
analytics platform, we look into what analytics applications need, 
based on a case study of a real-world end-to-end analytics 
solution.  Finally, we discuss how such an analytics platform 
might benefit analytics applications and transform how they are 
developed.   

2. SCIENTIFIC AND BUSINESS 
ANALYTICAL WORKLOAD 
Big data and cloud computing created a major shift in computing, 
moving the focus of computing from scientific workloads and 
business analytics into new born-in-the-cloud applications and 
compute models. 
Examples of scientific applications are weather modeling, nuclear 

test simulations, wave propagation, or molecular dynamic 
simulations. These applications are divided into tasks manageable 
to be performed on a single compute node, and are processed 
typically on a supercomputer. Supercomputers are systems with 
massive numbers of processors and with fast interconnect. 
Supercomputer users carefully split the overall problem into tasks 
manageable to perform on a single compute node. For example, 
for weather modeling, each compute node will process only data 
related to a small area, and will mostly communicate with the 
compute nodes processing its neighboring areas.  Data exchange 
between nodes is typically performed by using MPI (Message 
Passing Interface) programming model.  
Compute problems are typically mapped to hardware nodes in 
order to minimize physical distance between the nodes (to reduce 
the number of hops) and to take advantage of nearest neighbor 
network topology. Such example applications and supercomputers 
with multi-dimensional torus topology are found in Blue Gene 
supercomputer systems  [6]. 
A different type of application driving a need for compute 
systems is business analytics and big data processing. Business 
analytics applications allow processing and mining unstructured 
data in order to discover meaningful patterns in data so as to 
extract business value. Data can be in the form of unstructured 
text, such as in blogs and other social media, e-mails and 
documents, stored in variable-length descriptive formats such as 
XML, images, voice, video, and in various other forms.  
Business applications transitioned from automating processes and 
their reporting to discovery of information, prediction, 
prescription and decision support. Modern business analytics 
applications analyze significant amounts of unstructured data in 
conjunction with past business performance to gain new insight 
and improve business outcomes. New insights and understanding 
of business performance is based on past data, statistical and 
quantitative analysis, and predictive modeling. The extracted 
insights are used to drive future business decisions.  
Analytics relies on the simultaneous application of statistics, 
computer programming and operations research to quantify 
performance. Business analytics applications employ different 
methods and algorithms, such as statistic methods, simulation, 
optimization, data mining, machine learning, artificial 
intelligence, and cognitive computing. An example business 
analytics application is use of data analysis by banks or 
telecommunication companies to differentiate customers based on 
their credit risk, or on their usage of mobile networks. 
Many business analytics applications use text analytics to process 
unstructured input data. The data ingress modules need to parse 
unstructured data for a wide range of data formats and encryption 

                    

Figure 1.  Acquisition annotator converts input unstructured text into 
structured data.  



methods. Additional requirements may be posed on data ingress 
to process it at the speed of data feeds to enable real-time 
analytics, for example for sentiment analysis based on twitter 
feeds for real-time advertising. 

Acquisitions Annotator  [14] is an example application which uses 
a set of Java libraries that provide natural language processing 
features such as language identification, tokenization, relationship 
extraction, and semantic analysis. Internally, it relies on FSM 
(finite state machines) based algorithms and techniques that are 
similar to those used in regex (regular expressions) matching. An 
annotator is a text analyzer that takes unstructured text and 
converts it to annotated or structured data. The goal is to detect 
items of interest in the text analyzed, ranging from simple patterns 
like e-mail addresses and phone numbers to complex relationships 
like one company acquiring another.  Figure 1 illustrates the 
typical operation of an annotator. Our prior research  [21] 
identified that the application spends approximately 50% of its 
time in the FSM-based code. 

The FSM-based algorithms are very different from typical high 
performance scientific applications. In a typical scientific 
application, the same calculation is performed on large data sets 
arranged in arrays. Once operation is performed certain number of 
times, the calculation is completed. The number of operations to 
perform depends typically on the number of data elements. Data 
values and their indexes are separated from the control flow 
information. 

Unlike in scientific applications, text processing and FSM based 
processing applications change their flow depending on the 
current input. Input data is consumed, character by character, and 
depending on the character read, the action is determined. For 
example, depending on the ingress character, a different word can 
be identified, and a different flow is determined. Here, data values 
are used for both data calculation and for determining the control 
flow. FSM codes exhibit a similar memory access pattern as a 
pointer chasing kernel, and are difficult to optimize.  

Scientific applications pose demands on computing resources 
which are not a good match for cloud computing environment. An 
example is deterministic placement of workloads in a data center. 
The cloud compute environments are frequently virtualized, and 
placement of each individual virtual machine (VM) is not pre-
defined.  Instead, placement of a VM is determined at the time of 
provisioning to balance workload on physical servers in a data 
center. VM placement and variable network traffic in a data 
center cannot guarantee network latency.  

Instead, cloud computing is well suited for shared-nothing highly 
parallel applications. Low cost and easy access to computing 
infrastructure of a cloud influenced wide usage of distributed 
algorithms for processing large data sets in a massively parallel 
manner, which are described in more detail in the next chapter. 

3. PROGRAMMING MODELS FOR 
CLOUD  
 

Since Google published the paper on MapReduce in 2004  [7] and 
the Apache Hadoop project officially started in 2006  [2], 
MapReduce programming paradigm became a huge success and 
Hadoop has been used widely.  The success could be attributed to  

 
 
many of its outstanding capabilities such as ease of programming, 
scalability and fault tolerance.   

Among many reasons, the most important reason for MapReduce 
to be widely adapted would be ease of programming.  In Message 
Passing Interface (MPI) programming, the burden of message 
passing between processes was laid on programmers.  The key 
functions in the MPI library are send and receive operations, and 
programmers need to explicitly specify the parties involved in the 
communication. MapReduce framework completely eliminated 
this burden from programmers. Instead, the framework 
automatically distributes the tasks. This allows programmers to 
simply specify the computation without worrying about the task 
distribution and message passing. Seeing this advantage, there 
have been some efforts on supporting MapReduce operations on 
top of MPI to make use of MapReduce programming model while 
leveraging the existing high performance infrastructures  [19]. 
These attempts had a limited success, and MapReduce blossomed 
in cloud. 

The emergence of cloud propelled the success of MapReduce.  
Note that Amazon officially launched EC2 in 2006. The cloud 
allowed programmers to host MapReduce workload at a low cost.  
MapReduce frameworks take advantage of cloud’s capability to 
provide scalability and fault tolerance. For example, 
MapReduce’s capability to restart the failed tasks individually can 
be easily supported by unlimited and on-demand resources that 
cloud can provide. 

Another reason for the success of MapReduce would be its wide 
applicability. Although the MapReduce programming model 
started as a distributed way to count words from a large volume of 
data, MapReduce turned out to be applicable for various 
problems.  Many of business analytics problems, especially those 
that aim to extract useful information from big data, were able to 
use the MapReduce programming model, as illustrated in Figure 
2. For example, telephone companies collect call logs. Using 
these logs, they want to infer various user information: 
home/work location, commute path/time, nationality, languages, 
etc.  These profiles lead Telco to do better resource management, 
infrastructure planning, value-added services, and advertisement.  
The main challenge stems from the fact that the volume of logs 
for each user quickly adds up to be terabytes of data over time 
and becomes costly to perform analytics. MapReduce has become 
the most successful programming model used for these kinds of 
business analytics for the past decade. 

While MapReduce provides a powerful way to perform a batch 
job against big data, it is not suitable for processing stream data.  

    

Figure 2. Illustration of a MapReduce application. 



Most enterprise systems run monitoring agents 24-7 and generate 
an enormous amount of data. As the number of users increases, 
the volume of data produced even by people, let alone systems 
and sensors, became huge; the log data that Telco industry 
collects and Twitter would be good examples.   

Another weakness of MapReduce is its simple model: Map and 
Reduce. While this simple paradigm allows an ease of 
programming, it also has limitations. This programming model 
does not support iterative algorithms of which are commonly used 
for scientific applications and machine learning algorithms. There 
have been a few efforts to extend MapReduce programming 
models to support iterative algorithms  [17]  [9] without much 
commercial success.  

A well-known bottleneck for MapReduce is the disk I/O.  As most 
Hadoop jobs generate a significant amount of intermediate data, 
disk I/O often becomes the bottleneck. Although LZO 
compression may reduce the amount of disk I/O during shuffle 
phase, the amount of time spent for disk I/O still remains 
significant.  
Even with the enormous success of MapReduce, recognition of its 
shortcomings and the emergence of stream analytics have bought 
new technologies for business analytics. One technology that has 
been gaining attention recently is Spark  [4], which was initially 
started at the University of California Berkeley in 2009 and 
moved to Apache in 2013. Apache Spark enables applications to 
store data in memory. This avoids costly disk I/O and boosts up 
the performance significantly. Keeping the data in memory and 
allowing applications to access the same data set repeatedly 
improve the performance of iterative algorithms. Also, Spark is 
applicable for stream analytics. Spark Streaming provides an API 
to perform operations against stream data, such as data filtering 
and counting words periodically. 
As the importance of stream data processing is ever increasing, 
Google finally abandoned MapReduce and announced Cloud 
Dataflow in June 2014.  Cloud Dataflow supports programming 
primitives for both batch and stream data processing. Google 
open-sourced Cloud Dataflow SDK to allure developers to 
Google Cloud Platform.  Amazon, who is another strong player in 
cloud, also offers a solution for stream processing: Amazon 
Kinesis.  Although not coming from the MapReduce camp, IBM 
InfoSphere Streams also focuses on stream processing.  
InfoSphere Streams has been widely used in various industry 
sectors including financial services, healthcare, manufacturing, 
and environmental monitoring. 

4. ANALYTICS PLATFORM  
Various big data analytic platforms are designed and developed to 
meet the needs of various business analytics demands. For 
example, Hadoop, a widely used open source implementation of 
MapReduce, is known to be good at offline big data batch 
processing. Spark  [4], an in memory data analytic programming 
paradigm, has recently attracted significant attention due to the 
superiority in handling iterative and interactive big data 
applications.  On the other hand, there are also some specialized 
graph processing frameworks such as Giraph  [5], Pregel  [16] and 
Power graph  [10] which are designed and specially optimized for 
graph analytics workloads. These data analytics platforms provide 
a set of easy-to-use APIs allowing business analytics to perform 
in depth data analytics on large scale data sets on large scale 

distributed systems in a real time without worrying about the task 
partitioning, distribution, and failure recovery details. 
Bringing data analytics platforms in the cloud enables the 
business analytics to inherit the merits brought by clouds. Cloud 
provides an illusion of infinite resources that are available to meet 
the resource demand of business analytic workloads. The users 
can choose to scale up the workloads to a large number of 
machines speeding them up to meet the service level agreements 
(SLAs). In addition, the elasticity of cloud provisioning 
empowers customers the real flexibility to dynamically provision 
analytic workloads based on the demand in a more fine time 
granularity. Small and medium companies including startups can 
start with a small cluster and increase/decrease the cluster size as 
their business expands/shrinks. The elasticity of cloud can also 
help cloud providers to better match the resources with demands, 
improve the cluster utilization by multiplexing more workloads 
and make higher profits. Moreover, the pay-as-you-go model of 
clouds allows companies to rent compute and storage for analytic 
workloads in a short term basis eliminating the need to reserve 
resource upfront or to overprovision resources. 

Containerized clouds  [22] represent an important trend that shapes 
the cloud offerings and the way how business analytics can 
benefit from cloud. The concept of containerized clouds has burst 
into news headlines announcing Docker container offerings by 
IBM SoftLayers, Google App Engine, etc. Containerization 
alleviates the virtualization overhead of VMs by deploying 
applications within light weight virtualized layer that runs directly 
on a single instance of OS on a physical machine. Compared with 
VMs, containers can be provisioned order of magnitude faster and 
consume fewer resources since they eliminate the need of hosting 
multiple copies of OS images in a single bare metal machine. 
There are two usage models for analytics workloads in the cloud. 
One usage model is to provision a dedicated virtualized cluster for 
each submitted workload. The customers first ingest the data and 
data processing programs into object stores such as Amazon S3 
 [2] or Apache Swift  [18]. They then request a cluster to run their 
jobs. Upon receiving the request, the cloud providers provision a 
dedicated cluster for the workloads, copy the data and data 
processing programs into the allocated cluster, run the job, copy 
the data back to the object store after the jobs are finished, and 
tear down the allocated cluster. This usage model provides better 
performance isolation and better data locality since data and 
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Figure 3.  Desired properties of cloud for Analytic Platforms 



compute are usually collocated together on the same set of 
physical machines. Another usage model from cloud providers is 
to provision a multitenant analytics cluster and host workloads 
from different clients to the same provisioned cluster. In the case 
where performance isolation is not the top priority of customers, 
using a multi-tenant cluster can rule out the overhead to 
provision/de-provision a cluster for each client and simplify the 
cluster management process.   
As Figure 3 shows, in order for cloud providers to better serve the 
need for business analytics, there are a couple of important 
capabilities that cloud providers should provide.  First, for the 
case where single tenant clusters are needed, the cloud providers 
should be able to provision the virtualized cluster and tear down 
the cluster when the workloads are finished in an agile way. 
While traditional virtualization supports VM provisioning and de-
provisioning in the order of minutes, containerization techniques 
can achieve faster provisioning capabilities. This is particularly 
useful when there are a large number of workload submission 
requests waiting in the job queue.   
Second, the capability of providing an easy-to-use set of tools that 
helps users to configure the cluster setup and workload 
parameters can greatly reduce the barrier of using the cloud 
enabled data analytic platforms. For example, an automated 
cluster provisioning component that analyzes the workload 
characteristics and recommends cluster setup and workload 
configuration parameters can alleviate the cluster configuration 
burden from users. Starfish  [11] is a Hadoop self-tuning tool that 
automatically decides the cluster size and workload parameters. It 
also provides a what-if-engine to answer users’ queries in term of 
exploring the trade-off of low cost and fast turn-around time. 
MROnline  [12] [15] is an online parameter tuning tool for Hadoop 
workloads. It dynamically monitors the Hadoop workloads 
characteristics such as resource consumptions and data flow 
patterns and changes parameter configurations to better allocate 
resources to each task. However, Starfish and MROnline are 
specifically designed for tuning and configuring Hadoop 
workloads. It would be desirable to have similar automated cluster 
provisioning and configuration tuning tools for other frameworks 
as well. Moreover, given that various analytics platforms are 
available and each has different strength in handling different 
types of workloads, it can be beneficial to provide a unified 
framework that automatically chooses a framework that best fits 
the resource need of a particular application. 
Third, being able to auto scale up and down the cluster quickly 
can help reduce the cost and increase the cluster utilization for 
cloud providers. The Amazon elastic MapReduce  [1] allows users 
to scale up and down the clusters as needed. However, it requires 
users’ involvement to manually scale up and down the clusters. 
Moreover, the data components of the system have less flexibility 
to scale up and down since it can involve expensive data 
movement. Auto-scaling capability in a single tenant usage model 
can help users to reduce the computation cost while it can help 
cloud providers to adaptively respond to the aggregated workload 
demands without overprovisioning the cluster resources or 
violating the SLAs. Moreover, containerization technology brings 
new opportunities to scale up and down the containerized clusters 
significantly faster than VM clusters. It opens up possibilities to 
support new types of workloads, such as online streaming 
applications, that require clusters which can scale up fast. 
 

5. ANALYTICS APPLICATIONS 
To bring the discussion from the vision detailed in the prior 
sections of the paper to real-world use cases, this section outlines 
a contemporary application that illustrates the requirements and 
benefits from the realization of such a cloud-based analytics 
platform.  The application selected, a genomic analytics cloud 
service, is one that the authors here have detailed knowledge, and 
which provides examples of different aspects of analytics 
requirements.  
The Genomic Analytics Service (GenAS) is a cloud–based service 
that accepts samples of DNA data obtained from cancer cells as 
input, analyzes genetic mutations from  the DNA data, searches 
medical data and literature for drugs reported as targeting those 
specific mutations, (that is drugs which target the cancer 
pathways where the mutations are identified), and provides 
visualization of the affected pathways and how the drugs may be 
effective in inhibiting the cancer pathways. The GenAS service is 
targeted at oncologists, and cancer researchers as it users. It relies 
on large sets of ingested reference data, related to cancer 
pathways, and the drug relationships to these pathways.  This data 
is compiled from many sources to form a “curated” corpus of 
well-established knowledge which the analysis needs and uses to 
form its report of the analysis information to the doctor and 
research users.  To make the service more valuable, it adds to the 
curated corpus, the advances in research by employing natural 
language processing to analyze millions of research abstracts and 
papers, extracting from them new findings of cancer pathways to 
target or newly discovered effective drug uses.  Figure 4 shows 
the high-level architecture of this application. 

The GenAS service has been deployed to the IBM SoftLayer  [12] 
cloud. It provides a user portal for oncologists and cancer 
researchers to manage patient cases and submit samples, 
representing DNA data from cancer cells to be processed. 
Following analysis, the results can be viewed in report form as 
well as graphic visualizations of mutation findings and the 
effected cancer pathways by the drugs identified in the analysis 
report. 
An analytics platform has to start with how to get data into the 
platform, often with challenges such as large size or sensitive 
data, both of which are relevant to GenAS. The size of the DNA 
data can vary from less than 100 MB to more than half of a 
terabyte – the latter being raw data that needs pre-processing 
analysis to get to a variant or “differences” format (this can be 
done outside the service as well, and presented as the smaller size 
input mentioned). Due to sensitivity of genomic patient data, 
encryption techniques are used to secure the data before it enters 
the system and is at rest. Decryption is done as needed to perform 
the analysis, and scrubbing performed not to leave any clear form 
of the data anywhere within the service.  
GenAS uses the IBM SoftLayer provided Swift-based file system, 
Object Store  [13], as a persistent store of the input DNA data and 
resulting analysis output. Use of Object Store benefits the service 
by allowing for easy and direct input of data into the service 
without a bottleneck that might occur if the service itself were to 
be an intermediary or were involved itself in the data encryption 
mentioned, instead this is all done on the client side and data 
directly deposited already encrypted into Object store for the 
service to access. Object store further facilitates the sharing 
needed between components in the analysis pipelines - sharing of 
data being another key component irrespective of the type of 
analysis used. 



 
Figure 4. Genomic analytics service (GenAS) component diagram,  

highlighted items 1-4 identify 4 different analytics types in this service. 
With regards to the variety of analysis types used by GenAS, refer 
first to the case sequencing pool (reference #1 in Figure 4).  To 
accomplish the sequencing steps to transform a raw DNA data 
sample to a variant data form, there is a set of highly intensive 
compute and I/O processing steps needed. The case sequencing 
calls for large machines with a high-throughput file system. 
GenAS uses large physical (bare-metal) machines put together in 
a pool each with solid-state drives forming the disk-array base for 
the high-performance GPFS file system needed to perform the 
processing. The raw DNA data that has been input to the service, 
and persisted in Object Store, is brought into GPFS for the 
sequencing analytics. The result of this processing is a variant 
format file which is then stored back into the Object Store 
container with the original raw data – this then serves as input 
into next step of the analytics pipeline. The computational 
analysis processing for this has been found to perform best with 
parallelization across many cores of a single machine instance 
versus distributed across a cluster of machines.  So the machines 
in this pool are used to each service the sequencing of a single 
raw DNA data sample. 
Similarly, the case analysis (refer to #2 in figure 4), uses a virtual 
machine pool for performing the analysis of identifying 
mutations, cancer pathways, and related drugs.  It has a pipeline 
of processing steps which are generally not benefitted from 
distributing across the likes of a MapReduce or Spark cluster for 
parallelization. And since data sensitivity requires that 
unencrypted data not be allowed to be accessed by any but the 
owner of the data (user who submitted it), both the sequencing 
and case analysis use the pool model to batch process analysis 
requests on behalf of the user to avoid other users from ever 
accessing the system where the data is opened and not encrypted 
to be analyzed. A queue manager is used by GenAS to manage 

the queue of analysis requests, and prioritize the requests when 
they exceed the current pool size. The pool manager serves to 
manage the active pool of virtual servers – providing elasticity to 
grow the pool size as demand warrants. While GenAS currently 
uses SoftLayer virtual servers, experimentation with the use of 
container (docker) based pools to reduce overhead and time need 
to elastically grow the analysis pools, is planned as future work 
The analysis related to visualization (refer to #3 in Figure 4) is 
about finding the best way to layout cancer pathway graphs from 
what was identified in the case analysis, so that the user can better 
understand how the drugs identified may be effective in thwarting 
the patient’s cancer. This analysis too uses a resource pool, but in 
this case the active pool members are shared by multiple users, so 
that the least loaded of these will be used for the next 
visualization analysis request. The sensitive input DNA data is 
not exposed on these pool members, and therefore users do 
interact, albeit indirectly (via secured reverse proxy technology), 
to get the visualization served to their browser.  
In contrast, the analysis processing for extracting new pathway 
and drug treatments from the large body of new research papers 
employs MapReduce to parallelize across a cluster of virtual 
servers (refer to #4 in Figure 4).  This processing has to do natural 
language processing on abstracts and papers to glean from these 
the relationships stated between drugs and cancer types/pathways.  
These are added to corpus of knowledge that the service uses to 
identify drugs for consideration by the doctors in making their 
treatment decisions. There are millions of research publications 
processed, and given that the machine learning employed is ever 
improving, the need to re-run over older data is important as well 
as running for the new research. This calls for high-performance 
analytics and the MapReduce model of processing fits well. 



Having a cloud-based analytics platform as outlined in Section  4 
for applications such as the Genomic Analytics Service provides 
the versatility to easily spin-up the type of analysis required, and 
in the combination and size needed. Having the ease of cloud 
deployment and variety of analytics options available to 
experiment and discover what is optimal is key for reducing 
development time, optimizing the performance and the 
operational costs by elastically growing and tearing down on 
demand. 

6. A CONTINUED EVOLUTION 
As referenced in Section  3, the development of analytic platforms 
such as Hadoop has helped the industry advance from the point 
where analytics were primarily high performance computing 
applications to the point where many begin to leverage analytic 
components as part of traditional workloads.  In addition, as 
Figure 5 illustrates, the emergence of cloud and related delivery 
models have driven the cost and deployment inhibitors to levels 
where new analytic workloads will continue to appear and more 
traditional workloads will continue to embrace analytic 
components.  In this section, we will describe a few factors 
contributing to this continued evolution as well as how it may 
affect the industry’s workloads. 

6.1 Evolving Cloud Capabilities 
Many well-known cloud capabilities have already served to fuel 
the transition of analytics into more traditional workloads.  As 
described in Section  1, Cloud’s on-demand and pay-as-you-go 
delivery model allow any size analytic frameworks to be 
constructed and deconstructed based on need, reducing the cost 
and infrastructure requirements.  Having cloud expenses seen as 
operating expenses versus a more complicated capital expense 
also helps the workload owners clearly understand the cost and 
return on investments of specific workloads. However, the 
growing popularity of a few emerging trends may also help to 
accelerate this trend.  Micro-services architectures in which the 
workload is comprised of several API-connected services will 
permit a standard interface to analytic components that will 
enable portability and ease of maintenance. The growing 
popularity of PaaS (Platform as a Service) environments and 
offerings will provide a fertile ground for new analytic 
components to be created, advertised, and brought into rapidly 
deployed composeable workloads.  

6.2 Emerging Analytic Workloads 
As computing cost is driven lower and our ability to gather 
insights from data grows, we will continue to see rapid growth in 
every type of analytic workload. Data owners will continue to 
drive innovation to capitalize on their data at rest through various 
forms of passive analytics.  Sensor technology, including methods 
of monitoring and encoding complex manual processes, will 
become more cost efficient and pervasive, inviting many forms of 
operational efficiency analytics to drive optimization.  The ease of 
use of new analytic platforms and the low cost of cloud will 
attract solutions owners to build cloud based analytic workload to 
address mathematical challenges which may not have warranted 
large system investments in the past. In fact, as cloud computing 
cost drives towards rock bottom levels and analytic capabilities 
advance, IT organizations may find that they can explore many 
different analytic solutions simultaneously with little investment.  
As Figure 5 suggests, with analytics blocks becoming smaller, 
more cost effective, and readily available, development time and 
deployment cost of analytics will continue to reduce. This will 
lead many workload owners to find ways to make their workloads 
data driven.  For example, workloads which may have previously 
taken a static or user-provided configuration may instead leverage 
analytics to determine configuration recommendations or 
optimizations for the user to consider. The advent of analytics 
platform in the Cloud will enable wide usage and inexpensive and 
rapid implementation of analytics applications.  

6.3 Continuous Evolution 
Active research in strategic areas will continue to drive the 
creation and use of cloud-backed analytic platforms in today’s 
workload mix. Data transfer and storage advancements have 
begun which will help facilitate data movement, resiliency, and 
cost effective storage in the cloud.  Once the data volumes exist in 
the cloud, all types of passive analytics and creative analytic 
applications can be applied.  Early research in data privacy 
 [19] [20] and data derivation avoidance will also help meet the 
requirements of datasets containing sensitive information such as 
personal or patient data. Lastly, advancements in hybrid cloud 
which permit the union of on premise and off premise hosted 
environments will help more organizations ease into the cloud 
computing paradigm and perform analytic functions across these 
environments. 

Figure 5. Workload Evolution. 



7. CONCLUSION 
Cloud computing and analytics applications are radically 
changing the way enterprises utilize IT to gain a competitive 
advantage for their business.  Cloud computing provides low cost 
efficient IT resources, whereas analytics provides new insights for 
running their business. Currently, analytics applications are 
carefully tailored for the target problems, and are custom made.  
A number of services and programming models born in the Cloud 
such as MapReduce or Spark, or fast movement of big data in the 
Cloud are making application of analytics in the Cloud more 
feasible. Analytics Platform in the Cloud can enable a dramatic 
shift for analytics with low cost resources, easy to use 
programming models, and even readily available analytics 
services which enable rapid building of custom analytics 
applications.  
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