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Abstract—Understanding user mobility is critical for simula-
tions of mobile devices in a wireless network, but current mobility
models often do not reflect real user movements. In this paper,
we provide a foundation for such work by exploring mobility
characteristics in traces of mobile users. We present a method to
estimate the physical location of users from a large trace of mobile
devices associating with access points in a wireless network. Using
this method, we extracted tracks of always-on Wi-Fi devices from
a 13-month trace. We discovered that the speed and pause time
each follow a log-normal distribution and that the direction of
movements closely reflects the direction of roads and walkways.
Based on the extracted mobility characteristics, we developed a
mobility model, focusing on movements among popular regions.
Our validation shows that synthetic tracks match real tracks with
a median relative error of 17%.

I. INTRODUCTION

The purpose of mobile computing and communications is
to allow people to move about and yet be able to interact with
information, services, and other people. Anyone designing an
application, system, or network to serve mobile users must
therefore have some notion about how the users, and their
devices, move. Indeed, most researchers use simulation to
discover how their application, system or network responds
to variations in user activity, including mobility. It is thus
critical to support such simulations with a realistic model of
user mobility—and yet, most mobility models used by this
research community are ad hoc creations based on the intuition
of their designer. Few models are derived from traces of real
user behavior. The mobile and ad-hoc networks (MANET)
community depends on simple but unrealistic variations of
random-walk models, for example. An alternative to model-
based simulation may be trace-driven simulation. Although
trace-driven simulation does not require a mobility model,
model-based simulation allows researchers to explore a larger
parameter space.
To develop a mobility model, we must understand user mo-

bility. We must obtain detailed mobility data about real users,
and carefully characterize their mobility. This characterization
provides useful insights itself, for example, to researchers
interested in predicting mobility in support of location-aware
applications [1] or for network optimization [2]. Recent re-
search in opportunistic ad hoc networking also depends on an
understanding of user mobility and the opportunities for user
devices to interact when users pass close to each other. Some
recent work [3] distributed portable devices to real people to

collect data about such opportunities, but these studies are
based on small populations. One study [4] examines the large
traces collected at Dartmouth College [5], [6] and UCSD [7],
but only recognizes opportunities when the users are at the
same Wi-Fi access point (AP), in contrast to when the users
are within communication range of each other.
This paper describes our experiences in extracting user mo-

bility characteristics from wireless network traces (syslog) and
developing a mobility model based on these characteristics. We
chose to use syslog traces because these traces are relatively
easy to collect for large user populations; for example, the
traces collected at Dartmouth College contain data from nearly
10,000 users over several years. Any wireless ISP provider also
has access to similar data.
Although syslog traces are readily available, we cannot

extract mobility characteristics directly from them. These
traces contain sequences of access points with which wireless
devices associated. From these sequences, we need to extract
locations of users over time. We explored several methods to
extract mobility tracks from syslog traces.
We also developed a heuristic to extract mobility charac-

teristics from mobility tracks. From these traces we cannot
know whether a user was moving or not, so we need a way
to estimate pause durations. We validate this heuristic using
the data collected by controlled walks and then apply the
heuristic to our wireless network traces to collect mobility
characteristics.
We analyzed mobility characteristics including pause time,

speed, and direction of movements. We found that pause time
and speed distributions each follow a log-normal distribution.
Not surprisingly, the directions of movement do not follow
a uniform distribution, although many MANET researchers
make that assumption in their simulations. Instead, the di-
rections of movement follow the direction of popular roads
and walkways on the campus, and shows a strong symmetry
across 180 degrees. These mobility characteristics provide the
fundamental information that underlies any mobility model.
For our mobility model, we first define popular regions,

hotspots, and characterize these regions. We concentrate on
movements among hotspots, supposedly more interesting re-
gions for many applications. Researchers who want to simulate
how users aggregate (e.g., a friend-finder application [8]) need
to have this type of model. Those who want to explore aspects
of context-aware systems (such as scalability of context-aware



services [9]) can also benefit from such a model.
Finally, we use mobility characteristics to develop a soft-

ware model that generates realistic user mobility tracks. We
validate our model by comparing synthetic tracks with real
tracks. Our validation shows that synthetic tracks match real
tracks with a median relative error of 17%.

II. COLLECTING USER TRACES

We use the wireless network data set collected at Dartmouth
College to derive mobility information. The Dartmouth trace
data is the largest publicly-available set of Wi-Fi network
traces, comprising syslog, SNMP and tcpdump data that has
been collected since 2001 [5], [6]. In this paper, we concentrate
on the syslog data collected from the beginning of June
2003 to the end of June 2004. At the time, the Dartmouth
WLAN consisted of approximately 560 access points (the
number of APs changes over time as the network evolves).
Whenever clients authenticate, associate, roam, disassociate
or deauthenticate with an AP, a syslog message is recorded,
containing a timestamp in seconds, the client MAC address,
the AP name and the event type. Note that syslog traces do not
contain signal-strength information, which would have been
useful for locating clients.
The Dartmouth trace data includes a map, indicating the

(x, y, z) coordinate of most of the APs on campus. We define
a location as a pair of (x, y) coordinates on the map. (We
ignore the z coordinate, an integer representing the building
floor on which the AP is located, in our study; we hope
to extend our approach to three dimensions in future work.)
If a map of access points is not available, one can collect
location of APs through methods such as war-driving (as
used by Place Lab [10], [11]), or using AP position-estimation
techniques [12].
For the purposes of characterizing mobility, we are only

interested in a subset of wireless network users: the Voice-
over-IP (VoIP) device users. Most of the Dartmouth wireless
network clients are laptop users, but most of these clients
are not very mobile, or are nomadic in their mobile network
usage. We chose to concentrate on the always-on VoIP device
users, as these have been shown to have higher mobility [5].
We obtained a list of 198 MAC addresses belonging to Cisco
7920 Wi-Fi VoIP telephones and Vocera VoIP communicators,
and only considered syslog data containing one of these MAC
addresses.
For each VoIP-client MAC address in the trace data, we

extracted the syslog events for each day. To remove diurnal
effects where a client will be less mobile at night (for instance,
where the owner of a VoIP device goes home off-campus at
night but leaves the device charging in their office), we only
consider the working day by ignoring any events before 8 AM
and after 6 PM on each day.
We then divided the workday traces into stationary and mo-

bile sets. For each workday’s trace, we calculated its diameter:
the maximum Euclidean distance between the locations of any
two APs that a user visits on that workday. Figure 1 shows the
cumulative distribution function (CDF) of diameter for 7,128
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Fig. 1. Diameter. CDF of diameter across 7,128 workdays. The diameter of
100 m (denoted by the dotted vertical line) is used as the cutoff to separate
workday traces into stationary and mobile sets.

Mobile Stationary
(≥100m) (<100m) Total

Cisco 681 (34%) 1,330 2,011
Vocera 2,571 (50%) 2,546 5,117
Total 3,252 (46%) 3,876 7,128

TABLE I
WORKDAY TRACE SUMMARY. THIS TABLE SHOWS THE NUMBER OF

TRACES FOR MOBILE AND STATIONARY SETS.

workdays. The CDF shows a plateau starting approximately
at 100 m. Thus, we used 100 m as our cutoff (shown as the
dotted vertical line) to distinguish between the stationary set of
workdays and the mobile set. Workdays that have a diameter
of less than 100 m are considered stationary, while all other
workdays are considered mobile. Table I shows the number
of workdays in the stationary and mobile sets. 46% of all
workdays are considered mobile.
We parsed these syslog traces to obtain mobility traces. A

mobility trace lists locations of APs with which the device
associated, authenticated, or roamed along with a timestamp
for each action. (In the text that follows, association refers to
all three types of actions.) The parser also separates a workday
of a device into multiple walks whenever the device was off
for more than thirty minutes. We detected these “off” states
using the deauthenticate message that an AP generates for a
client who has not sent any message for the past thirty minutes.
The 3,252 mobile traces are converted to 3,838 walks, and the
3,876 stationary traces are converted to 4,006 walks.

III. TRACE PROCESSING ALGORITHMS

From these mobility traces, we need to extract user locations
or user tracks. Since we cannot tell, from these traces, whether
a user moved or not at a particular time, we also need to
estimate pause duration.

A. Estimating user tracks
The mobility traces provide the sequence of coordinates

of APs for each user on each workday, but line segments
connecting these coordinates in sequence may be far from the
user’s geographical location over time. While it is possible
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Fig. 2. AP associations. A pedestrian carried a Vocera communicator on an
outdoor walk around campus. This figure shows line segments between APs
the Vocera associated in sequence.

to estimate the location of a Wi-Fi user by having its client
sense multiple nearby APs (as with Place Lab [10] and many
others), it is experimentally difficult to obtain such location
traces from thousands of users. In contrast, syslog data, which
is recorded by the AP, is readily available. Thus, we explore
methods to estimate user locations from syslog data.
There are several reasons that locations in syslog data

may be different from a user’s location. First, most users
do not stand next to an AP, and then walk to a point next
to another AP. Second, mobile devices do not necessarily
associate with the geographically-closest AP. This behavior
results from many reasons, such as different APs being con-
figured with different power levels, or the signal from close
APs being blocked by buildings or trees. Third, different
devices have different aggressiveness in changing associations.
Less-aggressive devices do not change the associated AP as
frequently. Thus, they may be associated with an AP far from
the user’s current location.
To get a sense of how VoIP devices change associations,

we asked a volunteer to walk around on the Dartmouth
campus with a GPS device and a Vocera communicator. After
registering the GPS data to the AP map coordinates, we plotted
the actual path (according to GPS) and the associations in the
same figure. Figure 2 shows both the GPS track and the crude
track of a user’s location by drawing line segments between
the map coordinates of APs in sequence; the arrow shows the
direction of the walk. Clearly, a mobile user roams widely
from AP to AP. This crude method estimates a mobility track
that is far from the GPS track.
Based on the above observations, we need a method to

estimate a smooth path representing the user’s location over
time. We explore three approaches to address this problem.
1) Triangle centroid: The centroid algorithm uses location

of past three AP associations as the vertices of a triangle. We
estimate the user’s location as the centroid of a triangle, which
is the intersection of the triangle’s three triangle medians. The
location estimate is updated whenever there is an association
message.

2) Time-based centroid: Because devices do not change
associations periodically, using the past three associations may
be ineffective, especially for less aggressive devices. Thus, we
explore the centroid algorithm with a window of a fixed-time
period, q. Every p seconds, we update the user’s location with
associations that happened during the past q seconds. Thus, a
user’s location at time t is defined as:

x̄(t) = 1
n

∑n
i=1 xi, ȳ(t) = 1

n

∑n
i=1 yi (1)

where n is the number of associations within the past q
seconds. If there has been no association within the past q
seconds (n = 0), we keep the previous location estimate:

x̄(t) = x̄(t − p), ȳ(t) = ȳ(t − p). (2)

The default values for p and q are 10 and 60 seconds,
respectively. Note that n changes dynamically for each update
for this method, while n is fixed at three for the triangle
centroid algorithm.
3) Kalman filter: A Kalman filter is a recursive data pro-

cessing algorithm that produces optimal estimates. While this
filter requires significant knowledge of the system, one can
make reasonable guesses to get a good result.
The system to be estimated can be modeled as:

xk+1 = Φkxk + wk (3)

where xk represents the state of the system, Φ is a matrix
relating one state xk to the next state xk+1, and w is a
vector representing system noise. Our state variables include
the user’s location (x and y) and velocity (x ′ and y′). Then,
Equation 3 is written as:
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where t is the time difference between two consecutive asso-
ciations.
The measurement of the system is defined as:

zk = Hkxk + vk (5)

where H is a matrix relating the state variables xk to the
measurements zk , and v is a vector representing measurement
error. For each association k, we have the location of the AP
with which a user is associated. Given this measurement, we
update our estimate of the user’s location. Since the measured
location can be considered as the user’s true location disturbed
by some noise, Equation 5 can be written as:

[
z1

z2

]

k

=
[

1 0 0 0
0 0 1 0

]

k





x
x′

y
y′





k

+
[

v1

v2

]

k

. (6)

We now need to define the covariance matrices for wk

and vk, Qk and Rk, respectively. Q represents the degree
of variability in the state variables; R represents the measure-
ment uncertainty. Since the relationship between variances is
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Fig. 3. GPS tracks. This figure shows the GPS tracks of four walks depicted
on the Dartmouth campus map.

unknown, we assume that the variances are independent of
each other, making their products zero. The resulting Q and
R are:

Qk =





w1
2 0 0 0

0 w2
2 0 0

0 0 w3
2 0

0 0 0 w4
2





Rk =
[

v1
2 0

0 v2
2

]

Since it is the relative magnitude of values in covariance
matrices that affects the filter’s performance, we set values in
Q to one and empirically chose values for R in the following
section.
4) Validation: To validate path extractors, we walked

around on the Dartmouth campus with a GPS device, a
Vocera VoIP communicator, and a Cisco VoIP phone. GPS
data serves as the ground truth and VoIP data is used to
estimate a user’s path. We have data for four such walks,
each made by a different person along a different path. Each
walk lasted around 30 minutes, roughly 20 minutes walking
and 10 minutes pausing at an indoor location. With these four
walks, we were able to visit much of the area covered by the
campus-wireless network. Figure 3 shows the GPS tracks of
these walks on our campus map.
To get the difference between the tracks and GPS data, we

computed the distance between the two every 30 seconds.
Since there is no GPS data when a user was indoors, we
excluded these time periods from the calculation. (These
pause-time periods are later used to test our characterization
technique.) Figure 4 illustrates the distance between a GPS
track and an estimated track of a Vocera communicator for
one of our walks.
Choosing Kalman parameters: We used all four walks to

choose the Kalman parameters. Since movements in x and y
directions are likely to be symmetric, we assume that errors
in the x and y directions are same. Then, we have only one
unknown variable, v2.

Fig. 4. Differences. This figure shows the difference between the GPS track
and the path estimated using a Kalman filter.

Figure 5 shows the median difference between the GPS
track and the path estimated by Kalman filters with different
v2 values: 15, 25, 35, 50, 100, 150, 200, and 250. All users,
except User 4, do not show a trend over different values of
v2. For User 4, as v2 increases, the difference decreases for
the Vocera while it increases for the Cisco phone; there is not
one good value for both. Thus, we chose 25 for v 2 based on
the local minimum observed for some of the Vocera users.
Evaluating path extractors: From our walks, we found that

different types of devices have different association patterns.
Vocera communicators aggressively associated with many
APs, while the Cisco phones tended to stay associated with
a single AP for a long time. Path extractors should be able
to cope with these differences. We also observed that the
distance from a device to the associated AP varies by a large
amount; while a device tends to associate with nearby APs, it
sometimes associated with APs as far as 200 meters away. Path
extractors should be able to produce estimates with a bounded
error range by coping with associations with far-away APs.
Figure 6 shows the difference result for Vocera commu-

nicators and Cisco phones; each line shows the median and
maximum of differences (measured every 30 seconds) for
each user. The triangle centroid, time-based centroid, and
Kalman filter are labeled as ‘triangle’, ‘time’, and ‘kalman’,
respectively. In addition to these three algorithms, we included
a crude track by connecting the locations of APs (like that
shown in Figure 2); this track is labeled as ‘ap’.
The triangle-centroid algorithm produces relatively well-

bounded estimates for Vocera communicators, but its medians
for Cisco phones are much worse than the crude tracks. This
result happens because Cisco phones tend to stay associated
with an AP for a while, so using the past three associations
is too slow to reflect a user’s current location. The time-based
centroid algorithm works better than the triangle-centroid
algorithm for Cisco phones, but it sometimes updates the user’s
location with far-away APs as happened for Vocera User 2
and User 4. The Kalman filter produces estimates that are
well bounded for Vocera communicators and it also works
reasonably well for Cisco phones.
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Fig. 5. Kalman parameter. This figure shows the median difference between
the GPS track and the estimated path with different v2 values.

B. Extracting pause time

We then used the Kalman filter to extract user tracks, which
are sequences of a user’s locations with timestamps indicating
when the user arrived at each location. To characterize user
mobility, we need to separate the time between two consec-
utive associations into travel time and pause time. Since we
cannot tell whether a user was moving by looking at the traces,
we need to estimate pause duration.
1) Algorithm: We estimate pause duration using the user’s

speed. If the speed between two locations is within a “normal”
range, we assume that the user did not pause at the source
location. If the speed is too slow, we assume that the user
did not move at that slow speed, but instead, paused at the
source before moving to the destination. When considering a
“normal” range, we assume that users are pedestrians. This
assumption is reasonable for the Dartmouth campus; most
people walk rather than drive a car or take a bus on the campus
because the campus is small. For an environment where users
change their mode of transportation, we can adapt methods
that detect mode of transit [13], [14].
Our track traces consists of an arrival time ti and location

li, defined as (xi, yi). When a user arrives at li+1 at ti+1, the
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Fig. 6. Path extractors This figure shows median(‘x’) and maximum(‘o’)
of differences for Vocera communicators and Cisco phones.

speed from li to the new location li+1 is computed as

si =
di

ei
(7)

where di is the Euclidean distance between li and li+1, and ei

is the elapsed time, ti+1 − ti. If si is within the normal range,
we assume that the user did not pause at li. We defined the
normal range to be min ≤ si ≤ 10 m/s; we explored different
values of min: 0.1 m/s and 0.5 m/s. If si is smaller than min,
the user is likely to have paused at li before moving to li+1.
Thus, bigger min values are likely to produce more pauses.
The elapsed time, ei, is the sum of the pause time, pi, and
the duration of travel, qi, as illustrated in Figure 7. The pause
time, pi is computed as

pi = ei − qi = ei −
di

s′i
(8)

where s′i is the average speed of the user, computed as expo-
nentially weighted moving average: s ′

i = 0.25si + 0.75s′i−1.
In the traces we sometimes observe slow speeds due to

pauses, but we also observe some high speeds. These high
speeds are observed only with short ei (a few seconds).
Obviously, short ei produces high speed (see Equation 7).
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TIME

ASSOC_AP1 LEAVE_AP1

AP1 AP2

Fig. 7. Estimating pause and duration time. Assume a client moves from
AP1 to AP2. Our data set only contains the association times ASSOC AP1
and ASSOC AP2. The user, however, may have paused at AP1, and so we
need to estimate the pause time and the duration that it takes to travel from
AP1 to AP2.

recorded no clustering 15 m 35 m 55 m
vocera
1 600 45; 598+20 45; 598+20 45; 618 45; 618
2 608 259+306 259+306 564 564
3 620 9; 632 9; 632 9; 632 9; 632
4 606 24; 677 24; 677 24; 677 24; 677
phone
1 600 38; 68+513 37; 68+513 38; 581 38; 581
2 608 569 569 569 569
3 620 646 646 646 646
4 606 86+79+258+34+144 603 603 603

TABLE II
PAUSE TIME OF FOUR USERS (UNIT: SECOND). THE EFFECT OF

DIFFERENT CLUSTERING RANGES ON THE PAUSE-TIME COMPUTATION.
PAUSES AT THE PRE-DEFINED PAUSE LOCATIONS AND AT OTHER

LOCATIONS ARE CONCENTRATED WITH ‘+’ AND ‘;’, RESPECTIVELY.

Short ei is due to aggressive devices that change associations
in searching for better signal reception. Thus, these high
speeds are not likely to reflect a real movement of a user.
If si is greater than 10 m/s, we ignore the corresponding
segment when computing pause times pi and updating the
average speed s′i.
At the first movement between two locations in a track,

we have no value for s′
i, as we consider each track to be

independent. In this case, we use a default speed value of
1.34 m/s (3 mile/h) as this is an average human walking
speed. Note that the default value is used only when the first
movement is out of the normal range.
The Kalman filter updates a user’s location whenever there

is an association. Because a device can change associations
even the user is not moving, the difference between consec-
utive location estimates may be small. In this case, we want
to aggregate the user’s pause time. Whenever a device pauses,
we aggregate following pauses if those locations are within a
fixed range from one another. We explore the effect of different
“clustering ranges” in the following section.
With pause time defined for the ith movement, we can now

compute the speed of the user’s movement after the pause:

vi =
di

ei − pi
(9)

2) Validation: To validate our algorithm, we use the same
four walks described earlier. We asked people to pause around

10 minutes at an indoor location during a 30-minute walk.
Table II shows the pause time recorded by individuals and the
time computed using our algorithm with different clustering
ranges; the unit of time is second. For a given user, the
recorded pause duration was same for both the Vocera and
the phone. Note that our algorithm sometimes identified more
than one pause. Pauses at the pre-defined pause locations are
concentrated with ‘+’, while pauses at other locations are con-
catenated with ‘;’. Smaller clustering ranges (no clustering and
15 meters) sometimes divided the 10-minute pause into several
short ones. Bigger clustering ranges successfully aggregated
short pauses into a long 10-minute pause. After 35 m, the result
did not change. Thus, we chose 35 m as our clustering range.
A clustering range that is too big may erroneously aggregate
other short pauses (those separated by ‘;’ in the table) with the
10-minute pause. After clustering with a range of 35 m, the
difference between the recorded time and the computed time
for the 10-minute pause ranges from 3 seconds to 71 seconds.
For some users, we have short pauses that happened at a

location other than the 10-minute pause location. Some of
these pauses may be errors while others turned out to be
actual pauses. User 1 stopped momentarily before crossing
a road; the pause locations for 45 seconds for the Vocera and
38 seconds for the Cisco phone match with the crossing point.

C. Extracting hotspot regions

In addition to individual user’s mobility characteristics, we
are also interested in identifying the popular locations. To
define the regions that correspond to hotspots, we need to
aggregate user destinations to determine the most popular
destinations, that is, those destinations where the people spend
the most time. One simple approach is to divide the area into
fixed-sized regions and add the times that visitors spent in
each region. One problem with this approach is that a highly
popular hotspot may be divided into several regions and end
up as a group of less popular spots. A further problem is
that it is hard to determine an appropriate size for the unit
region. Making it too small results in generating too many
spots and not effectively aggregating visits, while making it too
big results in generating over-sized hotspots. To avoid these
problems, we chose not to divide our area into grid of fixed-
sized regions.
Instead, we apply a 2-D Gaussian distribution to each pause

location, weighted by duration of pause, and sum up the distri-
bution. At each pause location, the 2-D Gaussian distribution
creates a small ‘mountain’, uniformly distributed about its
vertical axis. We add the ‘mountains’ for visits and consider
those regions that are higher than a given threshold to be
hotspots. We explore different threshold values in Section V-A.
To select the appropriate Gaussian distribution, we need to

define the standard deviation, σ. This σ should reflect the
confidence in the exact user locations and the aggressiveness
in aggregating pauses. We chose σ of 20 meters based on
the result of our GPS experiment shown in Figure 6(a); the
medians of the differences are close to this value.
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Fig. 8. Pause. This figure shows the overall pause-time distribution.

IV. MOBILITY CHARACTERISTICS

Having verified that the Kalman filter provides a reasonable
approximation of the GPS data, we apply this filter to the 3,838
mobile walks to produce the same number of mobility tracks.
We then apply our pause-time estimator and extract mobility
characteristics: pause time, speed, direction, start time, and
end time.
For the 4,006 stationary walks, we do not extract user tracks.

We estimate each user’s stationary location using the simple
triangle centroid (Section III-A.1). We extract characteristics
such as duration of stay, start time, and end time.

A. Mobile set

For both pause time and speed characterization, we use
the complementary cumulative distribution function (CCDF):
F (x) = P (X ≥ x). CCDF is commonly drawn on a
logarithmic scale for both axes. The log-log CCDF helps
determine whether a set of data fits a power law or heavy-
tailed distribution; if the data is linear on a log-log scale, then
this means that the data fits a power-law distribution.
Figure 8 shows the log-log CCDF of the number of pauses

observed across all 3,838 walks as a function of pause duration
in seconds. We explored two different values of min, used
for our pause-time estimator (see Section III-B.1). Note that
we only counted non-zero pauses. This figure shows the
distributions of pauses both before and after clustering, using
the clustering range of 35 meters (based on the validation
presented in Section III-B.2). As expected, there were more
longer pauses when clustered. min of 0.5 m/s produced
relatively more shorter pauses than min of 0.1 m/s; this is
because bigger min identifies more pauses. It is clear that
none of distributions are linear. Using maximum likelihood
estimation (MLE), we find that the clustered pauses fit a log-
normal distribution, with a small number of users pausing for
long periods of time.
Figure 9 shows the weighted log-log CCDF of the total

duration of travel as a function of speed in meters per second.
It includes distributions with min of 0.1 m/s and 0.5 m/s. The
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Fig. 9. Speed. This figure shows the overall speed distribution. The speed
of each movement segment is weighted by duration of that movement.
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Fig. 10. Direction. This figure shows a weighted PDF of movement direction
with a bin size of 5°. The direction of each movement segment is weighted
by duration of that movement.

speed of each movement segment is weighted by the duration
of that movement.min of 0.5 m/s produced more faster speeds
than min of 0.1 m/s. The median for min of 0.5 m/s and
0.1 m/s are 1.26 m/s and 0.43 m/s, respectively; 1.26 m/s
(2.8 mile/h) is close to the average human walking speed
(3 mile/h). MLE finds that speed fits a log-normal distribution.
Figure 10 shows the probability density function (PDF)

of movement directions. The direction of each movement is
weighted by the duration of that movement. The bin size is 5°.
By manual comparison to a map of the Dartmouth campus,
we found that the directions with larger peaks correspond to
the directions of popular roads. Interestingly, the trends are
repeated every 180°. We expect that this symmetry is because
on a given road, people move in both directions. For instance,
on a road that goes south and north, people move either
northward or southward, generating peaks at two directions
that are exactly 180° apart. Because of this symmetry, both
the mean and median of the distribution are close to 0°.
Figure 11 shows a CDF of the start time and end time of

each of 3,252 mobile workday traces. The line ‘start’ shows
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Fig. 11. Start and end times of mobile workdays. This figure shows
the CDF across 3,219 workdays. ‘start’ denotes the time that devices first
appeared within a workday; ‘end’ shows the time that devices disappeared.

Fig. 12. Mobile users on map.

the time that devices first appeared within a workday. The line
‘end’ shows the time that devices disappeared. Note that our
chosen workday runs from 08:00 to 18:00; earlier start times
were recorded as 08:00 and later end times as 18:00. 47% of
workdays started by 09:00, and 53% ended after 17:00.
Figure 12 shows the distribution of pauses over our campus

after applying a Gaussian distribution for each visit and
adding them up. The darker spots represent higher mountains.
The popular regions include the main Dartmouth library, the
Department of Computer Science, the School of Engineering,
the building with offices of network administrators, a hotel
restaurant, and a gym.

B. Stationary set
We computed the duration of the stay for each of 4,006

walks. The duration of a walk is the difference between the
time when the first and last messages of that walk were
recorded. When there is only one message, the duration is
zero. Note that this duration is an approximation of the time
that a device was connected to the network. Since APs do
not always generate deauthentication messages, which show
the time that clients deauthenticate, we cannot rely on these
messages to determine when clients went off. For example,
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Fig. 13. Duration of stay. The CDF of overall duration of stay across 4,006
stationary walks. The vertical dotted line shows the thirty-minute timeout used
by APs to deauthenticate clients with no activities.
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Fig. 14. Start and end times of stationary workdays. This figure shows
the CDF across 3,876 workdays. ‘start’ and ’end’ denote the time that devices
first appeared and the time that devices disappeared within a workday.

if a device associates with an AP and no deauthentication
message was generated, the computed duration for that device
may be much shorter than the actual duration that the device
was connected to the network.
Figure 13 shows the CDF of duration for 4,006 walks.

About 29% had a duration of less than two minutes. The
jump at thirty minutes is due to the fact that a client is
deauthenticated if it has not sent any message for thirty
minutes. After the thirty minute jump, the number of walks
for different durations does not change much.
Figure 14 shows the CDF of start and end time for 3,876

stationary workdays. 28% of workdays started by 09:00 and
34% ended after 17:00. Compared to mobile workdays, sta-
tionary workdays started later and ended earlier. This result
may be because workdays that start later and end earlier are
more likely to have small diameters, and thus are classified as
stationary.
Figure 15 shows the users’ locations on the campus map

after applying a Gaussian distribution for each stationary
location. For this set of walks, we used the triangle centroid to
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Fig. 15. Stationary users on map. The arrow denotes a popular region that
is unique to stationary users.

compute the stationary location for each walk and calculated
the number of walks at each location. Note that we did not
consider the duration of stay for this set; each stationary lo-
cation is weighted equally. Compared to the popular locations
for mobile users (shown in Figure 12), the popular stationary
locations are restricted to smaller regions. Nonetheless, these
popular locations for stationary users coincide with those for
mobile users. The only location that is unique for the stationary
users is one of the clusters of undergraduate dorms, denoted
by an arrow in Figure 15. The locations that were popular
among mobile users, but not among stationary users, include
a gym and a hotel containing a restaurant.

C. Summary of characteristics
Table III shows the summary of mobility characteristics. For

each characteristic, we list the mean and median. The last two
columns show the parameters for fitted distributions and the
root mean square (RMS) error. Most characteristics are fitted
as either log-normal distribution or exponential distribution.
The equation for the PDF of the log-normal distribution is
f(x) = e−(ln(x−µ)2)/2σ2

xσ
√

2π
, and that of the exponential distri-

bution is f(x) = eax+b. To fit data to a distribution, we
first separated them into 100 bins. To remove the effect of
truncating traces to working hours, we ignored the first bin for
the start time, and ignored the last bin for the end time. The
start and end time of both mobile and stationary sets follow
exponential distributions. The pause times and speed of the
mobile set follow log-normal distributions. The durations of
the stationary set follow a uniform distribution.

V. CHARACTERIZING HOTSPOTS

The research community is often more interested in pop-
ular regions, hotspots, where wireless users spend most of
their time. For example, researchers working in opportunistic
networking or developing context-aware services need to have
an accurate model of these regions. Thus, we focus on these
hotspots in developing a mobility model. We first define
hotspot regions using a Gaussian distribution; the area outside
of hotspots becomes the cold region. We then characterize
each region separately.
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Fig. 16. Threshold for hotspots

A. Defining hotspot regions
Given the map of user destinations (Figures 12 and 15),

we need to define hotspot regions by applying a threshold.
Threshold values that are too low may generate too many or
big regions as hotspots. Some of these hotspots may be in
fact not popular locations. On the other hand, if the threshold
value is too high, we may also select too many hotspots, as
the threshold may divide a large region into several smaller
hotspots.
To observe the effect of selecting different threshold values,

we calculated the number of hotspots generated by varying the
threshold from 1500 to 2500 in increments of 100. Figure 16
shows the result. Among the values that generated the mini-
mum number of hotspots we chose the smallest, 1900; smaller
values produce larger hotspots.
Figure 17 shows the regions represented by these five

hotspots on a map of the Dartmouth campus. These hotspots
coincide with the locations of several buildings popular among
Vocera and Cisco phone users: the School of Engineering, the
main Dartmouth library, the Computer Science department, the
building with offices of campus network administrators, and a
hotel containing a restaurant. Note that these hotspots represent
popular spots among VoIP device users and may be different
from popular spots of the whole Dartmouth population.

B. Hotspot characteristics
Figure 18 shows a PDF of the number of users (walks)

starting their day at each region (shown as black bars). The
region labeled as ‘0’ represents tracks that started outside any
hotspot (the cold region); the rest represents values for each
hotspot. This figure also shows the area of each hotspot region
normalized by the total area of all hotspots (shown as white
bars). The size of the cold region is not included because we
do not have a clear boundary of the campus and thus do not
know the exact size of the cold region. Clearly, we see that the
number of users and the hotspot size follow a similar trend,
perhaps because a popular hotspot builds a larger ‘mountain’
with a larger base.
We also computed the pause-time distribution for each
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set characteristic unit mean median distribution RMS
mobile start hour 1.9 (09:54) 1.1 (09:06) exponential a = −0.438 b = −0.872 0.5399

end hour 8.5 (16:30) 9.1 (17:06) exponential a = 0.523 b = −6.637 0.1844
pause (min=0.1m/s) hour 0.718 0.223 log-normal µ = −1.880 σ2 = 5.085 1.1654
pause (min=0.5m/s) hour 0.466 0.045 log-normal µ = −2.700 σ2 = 4.738 3.0781
speed (min=0.1m/s) m/s 0.76 0.43 log-normal µ = −0.741 σ2 = 0.788 0.5252
speed (min=0.5m/s) m/s 1.64 1.26 log-normal µ = 0.290 σ2 = 0.604 0.5253

direction degree -6.2° 2.5° - -
stationary start hour 3.3 (11:18) 2.4 (10:24) exponential a = −0.175 b = −1.599 0.3754

end hour 7.3 (15:18) 8.4 (16:24) exponential a = 0.249 b = −3.858 0.5246
duration (after 30 minutes) hour 5.1 5.0 uniform f(x) = 0.1055 0.3802

TABLE III
SUMMARY OF MOBILITY CHARACTERISTICS.

Fig. 17. Hotspots on campus map. This shows the hotspots identified with
the threshold of 1900. Hotspots 1 to 5, in order, correspond to a hotel, the
School of Engineering, the main Dartmouth library, the Computer Science
department, and the building with offices of campus network administrators.
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Fig. 18. Initial regions. This figure shows the initial region distribution of
the number of users for each region. ‘0’ represents regions outside of five
hotspots.

region. Figure 19 shows CDFs of pause time for five hotspots
and the cold region. We first aggregated pause time as long
as a user remains within the same region. The aggregated
pause time depicts the duration of a user’s stay after entering
a region. For each region, we have a CDF of the number of
aggregated pauses for all walks as a function of aggregated
pause duration. We include pause times of zero seconds; we
need this information for simulation to decide whether to pause
or not before moving to the next location. Figure 19 shows
that the cold region has relatively more short pauses than any
of the hotspots. This result is expected since we chose hotspots
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Fig. 19. Pause distribution per region. This figure shows the CDF of pause
time for five hotspots and the cold region.

as regions that have longer total pause times. Among the five
hotspots, hotspot 2 and 3 have more long pauses. This implies
that people tend to stay for a long time in these two regions:
the School of Engineering and the main Dartmouth library.
To capture movements between different regions, we com-

puted the probability of moving from one region to another. In
addition to five hotspots and the cold region, we also defined
the OFF state. Thus, we have an n×n transition matrix where
n − 2 is the number of hotspots.
Among these seven states, the cold region is treated differ-

ently. It is considered not as a destination, but as a waypoint
that a user goes through or stops on the way from one
hotspot to another. A waypoint is location l i in our track
traces described in Section III-B.1. For each transition from
one hotspot to another hotspot or OFF state, we count the
number of waypoints from traces, and generate a (n − 1) ×
(n − 1) waypoint matrix that consists of the average number
of waypoints when users moved between two regions.

VI. MODELING MOBILITY

We generate synthetic mobility tracks using our model and
then compare these tracks to the real tracks, using character-
istics that were not considered by the model.

A. Generating tracks
To simulate users’ movements, we use the following mo-

bility characteristics that we described earlier:
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waypoints

destination

Fig. 20. Example of a path with three waypoints.

1) Ratio of mobile set size to stationary set size
2) Mobile set

• n × n Region transition matrix
(where n − 2 is the number of hotspots)

• (n − 1) × (n − 1) Waypoint matrix
• Overall speed distribution
• Overall start time distribution for mobile workdays
• Initial region distribution
• Pause time distribution per region

3) Stationary set
• Initial location map
• Start time distribution for stationary workdays
• Duration of stay

Using these characteristics, we generate synthetic movement
traces. A user is assigned as either mobile or stationary using
the mobile to stationary ratio. A stationary user enters the
network at a time from the start time distribution at the location
from the initial location map. She then stays at the location
for the duration chosen from the duration-of-stay distribution.
A mobile user enters the network at a time selected from

the start time distribution at a region selected from the initial
region distribution. The user’s next destination is then chosen
based on the probabilities in the region transition matrix.
The number of waypoints visited on the way to the desti-

nation is based on the waypoint matrix. We use a Gaussian
distribution with the mean based on this matrix to choose
the number of waypoints, k, for each move. We choose the
locations of k points, uniformly distributed, within the area
bounded by a box whose two diagonal end points are defined
by the source and the destination of the move. We then sort the
k points in ascending order by their distance from the source.
Figure 20 shows an example path constructed in such way.
We expect that this approach generates paths that are closer
to real movements than using straight lines between regions.
The speed of movement is chosen from the overall speed

distribution. Once a user has reached the destination, he pauses
for a period chosen from the pause time distribution for
that particular region. When the pause time elapses, the next
destination is chosen using the region transition matrix.

B. Validation
One of the most difficult problems in modeling is to

determine whether a model captures reality. For instance, one
could compare the pause-time distributions of both sets of
tracks and determine whether they are similar. The pause-time
distribution, however, is a component of the model that created

the generated tracks. We would therefore expect the two
distributions to be similar. Verification [15] is concerned with
determining whether the conceptual model has been correctly
translated into a computer program. Although verification is
an important step, its purpose is debugging. Instead, one needs
to validate a model. Validation is the process of determining
whether a model is an accurate representation of the system.
To validate a model, we need to compare an aspect of the
tracks that is not a component of the model.
We validate the tracks by looking at the number of visitors

within a given region in each hour of a workday. We define the
number of visitors to be the number of users who either were
already in the region at the start of the hour or entered during
the hour. Note that a user can be counted at most once for a
region in a given hour. We count the visitors per region per
hour for both the generated tracks and the real ones. Note that
this method does not validate the path (location of waypoints)
that a user took to move between hotspots. It also does not
validate behaviors of stationary users.
Figures 21 shows the number of visitors per region per hour.

The x-axis shows one-hour buckets starting at 08:00 and end-
ing at 18:00. The number of visitors using the synthetic tracks
are similar to the real tracks for all regions except hotspot 1.
The number of visitors in the real tracks for these four hotspots
is relatively stable during the day. Visitors increase at the
beginning of the day, are relatively constant during the day,
and decrease at the end of the workday. Hotspot 1, however,
has a large peak between 1200 and 1300, which may be due
to users visiting a restaurant during their lunch hour. The
synthetic tracks of hotspot 1 fail to match the real behavior
due to these temporal variations. While our model considers
the variations for the beginning and ending of each working
day, it currently does not consider the variation for certain
hours during the day, such as lunch time. Incorporating such
temporal variations may be useful, although it may require
prior knowledge about a hotspot, such as whether it contains
a restaurant, if lunch-time movements are to be considered.
We compute the relative error for each hotspot. Let the value

of a real track be r and that of synthetic track be s. Then, the
relative error is defined as

∑n
i=1 |ri − si|/

∑n
i=1 ri where n

is the number of hour-long bins.
Figure 22 shows the relative error between the synthetic

tracks and real tracks. Hotspot 1 with a large peak during
lunch time has the largest error of 46%. The error for the
rest of the hotspots ranges from 16% to 30%. The median of
relative error for the five regions is 17%.

VII. RELATED WORK
Most MANET researchers use relatively simple mobility

models, based on some form of random walk on a flat plane.
With increasing awareness of the limitations of some of
these models [16] and the importance of a realistic mobility
model in the evaluation of MANET protocols [17], others
have begun to propose more complex models. For example,
Jardosh et al. propose a random-walk model that incorporates
obstacles [18]. This paper describes a technique for modeling
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Fig. 21. Hourly visitors. This figure shows the number of visitors during
each hour of a workday for the five hotspots.

paths between points based on Voronoi diagrams, which could
be adapted for use in our model. Another mobility model
is proposed by Musolesi et al. [19], who use observations
from social networking theory to create a model that reflects
how users congregate according to their social relationships
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Fig. 22. Relative error. This figure shows the relative error between the
synthetic tracks and the real tracks.

with each other. These complex models, however, are typically
synthetically generated, rather than based on real traces.
Recently, there have been a few papers describing ways

to extract places from traces of user mobility. For exam-
ple, Patterson et al. used GPS data in an effort to identify
common destinations in a user’s daily life [20]; their results
are interesting, but it is not clear how to use this technique
to derive a general model for a user population. Similarly,
Kang et al. demonstrate a method for clustering a sequence
of location observations to identify “places” within a moving
user’s path [21]. Again, although they validate the technique
on a trace of two users, their aim is not to build a general
model for a larger population.
There have been few significant efforts to create mobility

models from real traces. In one short paper, Hsu et al. develop
a Weighted Way Point model from a set of survey data,
in which they asked 268 students to keep a diary of their
movements on campus for a month, at the granularity of a
building [22]. Using a predefined set of five location types
(classrooms, libraries, cafeterias, off-campus, and other), they
noted a non-uniform distribution of visits to these location
types. Their Markov-based model conditions the choice of a
next location type upon the time of day (morning or afternoon)
and on the current location type. They also used the survey
data to extract a distribution of pause times for each location
type. They confirm that their model, when used in a simulator
for ad hoc routing, does demonstrate non-uniform location
distribution and (due to clustering) leads to lower connectivity
than does the random way-point model. Although our study
must estimate user locations from network-association records,
it goes far beyond their study, by extracting mobility for
a larger area, with finer location granularity, over a longer
period of time, and for far more users. Another study based on
observations of pedestrian traffic on a campus [23] developed
a hybrid mobility model which favors certain directions based
on probabilities computed from the observations. In this short
paper, they only observe people at six locations on a large
campus. Using the same trace as our study, Jain et al. [24]
developed a model of wireless users’ AP registration patterns,
which may be significantly different from users’ physical
mobility patterns. Their model ignores temporal patterns and
focuses only on spatial patterns.
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VIII. CONCLUSION
This paper has presented one of the first attempts to

construct a WLAN mobility model from real-world wireless
user traces. We present a method for extracting users’ mo-
bility tracks from these traces, and validated this method by
comparing them to the location determined by users carrying
both GPS and 802.11 devices. We applied our method to
one of the largest available traces of wireless users, from
Dartmouth College. By examining the mobility in these tracks
we were able to extract information about the movement
speed, pause times, destination transition probabilities, and
waypoints between destinations. This information forms an
empirical model that we used to generate synthetic tracks,
which we validated by comparison to the real tracks. We
found that our generated tracks produced similar results to the
real tracks, save in the cases where temporal variations were
present in the real tracks, as our model does not consider these
temporal effects.
We believe that this model, and the methods used to

construct it, will be useful for research in many areas of mobile
computing and communications. As examples, we cite related
work in mobile ad hoc networking, opportunistic networking,
content-distribution networks, and location prediction, all of
which need good mobility models or an understanding of
mobility characteristics.
In future work, we intend to further improve our metrics

for validating our synthetic tracks. We also intend to help
the research community use our model by developing a track
generator capable of creating mobility traces that can be used
by the network simulator ns-2.
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