
An Empirical Analysis of Similarity in Virtual Machine
Images

K. R. Jayaram∗, Chunyi Peng∗, Zhe Zhang†, Minkyong Kim†, Han Chen†, Hui Lei†
IBM Thomas J. Watson Research Center

Hawthorne, NY, USA

ABSTRACT
To efficiently design deduplication, caching and other man-
agement mechanisms for virtual machine (VM) images in
Infrastructure as a Service (IaaS) clouds, it is essential to
understand the level and pattern of similarity among VM
images in real world IaaS environments. This paper empir-
ically analyzes the similarity within and between 525 VM
images from a production IaaS cloud. Besides presenting the
overall level of content similarity, we have also discovered in-
teresting insights on multiple factors affecting the similarity
pattern, including the image creation time and the location
in the image’s address space. Moreover, we found that sim-
ilarities between pairs of images exhibit high variance, and
an image is very likely to be more similar to a small subset
of images than all other images in the repository. Groups of
data chunks often appear in the same image. These image
and chunk “clusters” can help predict future data accesses,
and therefore provide important hints to cache placement,
eviction, and prefetching.

Categories and Subject Descriptors
D.4.3 [Operating Systems]: File Systems Management
Maintenance; D.4.2 [Operating Systems]: Storage Man-
agement Storage Hierarchies; C.2.4 [Computer Commu-
nication Networks]: Distributed Systems Distributed Ap-
plications

General Terms
Experimentation

∗K. R. Jayaram (jayaram@purdue.edu) and Chunyi Peng
(chunyip@cs.ucla.edu) were interns at IBM when this re-
search was conducted. K. R. Jayaram is also affiliated with
Purdue University and Chunyi Peng is also affiliated with
the University of California, Los Angeles.
†{zhezhang,minkyong,chenhan,hlei} @us.ibm.com

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Middleware 2011 Industry Track, December 12th, 2011, Lisbon, Portugal.
Copyright 2011 ACM 978-1-4503-1074-1/11/12 ...$10.00.

Keywords
virtual machine, similarity, caching, distribution, IaaS

1. INTRODUCTION
The increased popularity of Infrastructure as a Service

(IaaS) clouds has resulted in an explosion of the number of
VM images. Amazon Elastic Compute Cloud (EC2), for ex-
ample, has 6521 public VM images[2] (data on private EC2
VM images is unavailable). This has created crucial chal-
lenges in managing cloud environments. Today’s production
clouds widely use cloud management systems to automate
and ease the administrative tasks of IaaS providers, exam-
ples of which include IBM Tivoli Virtual Deployment En-
gine (VDE) Beta[7], VMWare’s VSphere[13], and Eucalyt-
pus[10]. Many critical responsibilities of cloud management
systems are tightly related to VM images, including (1) ef-
ficient and reliable storage of VM images; (2) low-latency
retrieval of VM images for instantiation in response to cus-
tomer requests; (3) prompt capture of VM images from run-
ning instances; and (4) fast transfer of VM image data across
cloud servers to facilitate live VM migration.

Therefore, one key factor impacting the performance of
cloud management systems is how to reduce the amount of
VM image data to store and transfer. This, in turn, depends
on the similarity in VM images. The similarity in VM im-
ages can be leveraged to reduce the total amount of image
data to store. Deduplication techniques have been proposed
to identify and remove duplicate data blocks when handling
a collection of images [5, 8]. This can lead to significant
space saving in image storage servers, and enable live VM
instances to share data blocks. To efficiently design such
deduplication techniques, it is essential to understand how
much similarity can be found in real-world cloud environ-
ments under different schemes to divide images into chunks,
and how the similarity changes when the collection of images
grows.

VM image similarity can also be leveraged for content-
aware caching and prefetching of image data. Because a
typical VM image contains multiple gigabytes of data, it
takes long time to copy an image from the image storage
server to the target hypervisor host to instantiate a VM
instance. By having a cache at the hypervisor level, multi-
ple VM instances can share common parts of VM images.
One example is the delta deployment mechanism in the Mi-
rage [3] system, which keeps popular images in cache and
only fetches a diff from the storage server when an image is
requested that is not in the cache. In designing cache place-
ment, eviction, and prefetching schemes, it is important to

determine “hints” that indicate high chance of content simi-
larity. For example, if the similarity is correlated to the po-
sition in the image, and the beginning portion of images are
more likely to be common to each other, we can give higher
priority to these chunks to stay in the cache. Another effec-
tive hint is the “affinity” among chunks, i.e., which chunks
often appear together in the similar VM image? For tech-
niques that cache entire images, such as delta deployment,
it is also highly useful to understand which images are sim-
ilar to each other, in that they contain a large number of
common data chunks.

VM images are similar due to several factors. First, sev-
eral public virtual appliance libraries contain VM images
with the same or similar operating systems. For example,
out of the 18 OpenSUSE VM images in the EC2 public li-
brary, 8 contain the OpenSUSE version 11.4 OS and 5 con-
tain OpenSUSE 11.3 [2]. Next, of the images containing
the same OS, many contain the same or similar applica-
tions. For example, of the 45 VM images in the Turnkey
library containing Ubuntu 10.04.1 LTS, 20 images contain
the Apache2 web server [1]. Finally, many users create pri-

vate images by slightly modifying public images, e.g. with
passwords, public/private keys and software patches.

The main challenge in analyzing content similarity, just
like deduplication in storage systems, is to identify (large)
chunks that are common to two or more images. To that
end, similarity detection techniques can be classified into
two types: (1) white-box techniques, which typically under-
stand the file system structure of VM images, and compute
MD5/SHA hashes of files to identify common files, and (2)
black-box techniques, which as the name suggests, do not
understand the semantics of VM images. Such techniques
typically break a VM image into fixed/variable sized chunks,
and identify common chunks by using their hash keys. The
advantage of white-box techniques is that the knowledge of
an image’s semantics can lead to increased similarity and
deduplication, as revealed in [6], but the disadvantage is that
whole images should either be reconstructed at the hypervi-
sor or the hypervisor should be modified to handle special-
ized image formats. In particular, it is difficult for an image
chunk cache to maintain the file system semantics informa-
tion. For this reason, we choose to use black-box techniques
in our study.

The main goal of this paper is to conduct an in-depth and
empirical evaluation of the similarity in VM images used
in a realistic cloud environment. Through this evaluation,
we provide insights on the overall level of similarities in VM
image data as well as different factors affecting the similarity.
Compared with existing studies on this topic, we make two
major contributions:

1. We analyze a large collection of VM images (525 in
total) from a production data center, which reflects a
snapshot of the image repository. Many of these im-
ages were created by real cloud users, and reflect their
usage pattern. Previous work on VM image similar-
ity [5, 8] either analyzes “master” or “template” VM
images downloaded from the web, or randomly selected
from the image repository. We also quantify the effect
of a wide variety of chunking schemes with realistic
chunk sizes. The chunk sizes we select are based on
the requirements of cloud management systems.

2. Beyond measuring the overall level of similarity, we

study the correlation of similarity with many factors
that could serve as hints to cache management. We
have discovered distinct similarity patterns in differ-
ent regions of the image address space. We have also
identified large variance in the pair-wise similarity be-
tween data chunks, which indicates the existence of
chunk clusters that are likely to appear together in
the same image. Image pairs that are highly similar
to each other have also been observed, which serves a
rationale for deploying image-level caches.

2. RELATED WORK
Content similarity among files, file systems, and VM disk

images is important in various aspects of system manage-
ment, and has hence been widely studied by researchers.

In [11], through extensive analysis, the authors demon-
strate that popular media files do exhibit similarity among
each other. By leveraging similarity and allowing clients to
download from similar sources, download times are signifi-
cantly improved. A novel MR(multi-resolution) handprint-
ing mechanism has been proposed in [12] to further enhance
the efficiency of similarity detection. Since the goal of this
body of work is to facilitate the transfer of entire media files,
the analysis has been focused on detecting the overall level
of similarity among files without covering detailed similarity
patterns. Moreover, the similarity results for media files are
not directly applicable in the context of VM image files.

In a recent paper [9], Meyer et al. present a deduplica-
tion study of file systems from 857 desktop computers at
Microsoft over a 4 weeks time span. This work compares
chunk-based and file-based methods, and finds that whole-
file deduplication can achieve 67% of the space saving of
block-level deduplication for live file systems, and 87% for
backup storage respectively. Another interesting insight is
that 96% of files are entirely linear in the block address
space. Since the actual value of any non-duplicated hash
is irrelevant to this work, a novel two-pass mechanism has
been used to save machine time in post processing. In the
first pass, all hash values that appear more than once are
inserted into a Bloom filter [4]. In the second pass, all hash
values are compared to the Bloom filter so that all unique
values are removed. The insights revealed in this paper are
highly relevant to our work, and the post processing mecha-
nism can be leveraged in our future study of larger data sets.
However, the content data studied in this paper consists of
running or backed up file systems, rather than disk images
of virtual machines. Moreover, the file systems studied are
from desktop computers running the Windows OS, while our
images are installed with the Linux OS and various Linux
software packages.

Deduplication for VM image files has also been studied.
In [5], a block-level deduplication mechanism is proposed for
VMware’s VMFS file system. It leverages similarity among
VM images to avoid storing redundant data blocks. This
work focuses on techniques to efficiently detect and merge
duplication, and is orthogonal and complementary to our
study.

In [8], a similarity study is conducted to evaluate the ef-
ficacy of deduplication using both fixed size chunking and
Rabin fingerprinting schemes to store a set of 52 VM im-
ages downloaded from online repositories. It is shown that
VM images share a lot of common data if they use the same
OS and just install different applications. This study also

finds that fixed-size chunking schemes lead to similar dedu-
plication ratio as their variable-size counterparts. Our study
differs from this work in two major ways. First, we study a
large number of VM images from a production cloud data
center, which represents realistic duplication and growth
patterns of image content data. Most importantly, it cap-
tures the behavior of real users in creating customized im-
ages. Second, our study goes beyond deduplication for ef-
fective storage. Our goal is to also provide insights for the
design of VM image cache on hypervisor hosts. Therefore,
we have analyzed the correlation of content similarity with
a number of factors, including the region in a VM image’s
address space, and clusters of similar chunks and images.

3. EMPIRICAL ANALYSIS

3.1 Methodology and Data Selection
Our analysis is based on the VM image repository of

a production cloud data center. The set of 525 VM im-
ages we study reflect the snapshot of the repository on 12th
June 2010. All the 525 images are based on Linux or IBM
AIX operating systems. They are installed with typical
server applications including Apache Tomcat, Hadoop, and
so forth. Each VM image contains varying amounts of zero-
filled blocks, depending partially on the size of the image
and the OS/applications installed in it. In the 525 VM im-
ages used in our analysis, the proportion of zero-filled blocks
varies between 35% and 55%. Since zero-filled blocks are
not actually stored on disks or caches, we ignore them in
the results reported in this paper. We divide each image
file into chunks using different chunking schemes, and hash
each chunk. In total, we examine eight chunking schemes:
(a) Fixed size chunking with MD5 hashing of chunks (chunk
sizes were 4KB, 8KB,16KB, 32KB and 64KB) and (b) Ra-
bin fingerprinting (where the minimum chunk sizes are 8KB,
16KB and 32KB).

Rabin fingerprinting is a method for implementing public
key fingerprints using polynomials over a finite field, and
has, among others two parameters rs and rv. As opposed to
fixed size chunking and hashing, Rabin fingerprinting selects
blocks not based on a specific offset but rather by some
property of the block contents. It slides a window of size
rs a over the file, computing the Rabin fingerprint of the
window. When the low rv bits of the checksum equals a
“special value”, the fingerprinting scheme ends the current
block and begins a new one. This has the effect of shift-
resistant variable size blocks.

Several implementations of Rabin fingerprinting allow the
user to specify maximum and the desired average size of
the chunk. Specifying the minimum chunk size is useful,
especially in VM management middleware where the over-
head of handling very small chunks can be large. Specifying
the maximum chunk size can also be useful, e.g., in caching
middleware which has to allocate cache frames. But, intu-
itively, specifying the maximum chunk size leads to less ef-
fective Rabin fingerprints, because it overrides normal chunk
boundaries. To analyze the effect of specifying a maximum
chunk size, we used a maximum chunk size of 8.5KB in the
8KB Rabin fingerprinting scheme, and did not specify any
maximum chunk size in the 16KB and 32KB schemes.

Our analysis is designed to reveal several important in-
sights in similarities among VM images. First, we measure
the overall level of similarity within and between VM im-

ages. Second, we present how the similarity changes when
the VM image repository grows over time. Next, we corre-
late the duplication with the position of the chunk in the
image file. Finally, we detect groups of images that are
“clustered” together in terms of containing large number of
similar chunks, and groups of chunks that often appear in
the same image.

3.2 Overall Chunk Duplication

 65

 70

 75

 80

 85

 90

 95

 100

2 5 10 15 20 25

P
er

ce
nt

ag
e

of
 c

hu
nk

s

Number of appearances

4KB
8KB

16KB
32KB
64KB

(a) Chunk duplication CDF with fixed size chunking schemes

 70

 75

 80

 85

 90

 95

 100

2 5 10 15 20 25

P
er

ce
nt

ag
e

of
 c

hu
nk

s

Number of appearances

8KB Rabin
16KB Rabin
32KB Rabin

(b) Chunk duplication CDF with Rabin fingerprinting
schemes

Figure 1: Cumulative distribution function (CDF)
of the number of duplications for each distinct non-
zero chunk, under different chunking schemes

To evaluate the overall level of duplication, we generate
the cumulative distribution function (CDF) of the number
of times that a chunk appears within and across VM images,
as illustrated in Figure 1. For each value x on the X-axis, the
graph in Figure 1 shows the percentage of non-zero chunks
that appear fewer than x times.

From Figure 1(a) which corresponds to fixed size chunk-
ing, we observe two trends: (1) Even fixed size chunking is
able to detect a significant level of deduplication. For exam-
ple, with a 4KB chunk size, approximately 30% of chunks
occur at least twice, and around 12% of chunks are dupli-
cated at least 5 times. (2) The chunk duplication level de-
creases quickly with chunk size. With the 4KB chunk size,
around 70% chunks appear only once in the 525 VM images,
and around 78% chunks appear fewer than 5 times. How-
ever, with the 32KB chunk size, the corresponding numbers
are approx. 83% and 97%.

One would expect that Rabin fingerprinting increases the
duplication level when compared to fixed size chunking. How-
ever, from Figure 1(b), we observe that Rabin fingerprint-
ing degrades the duplication level for the 8KB chunk size,

and increases the duplication level for the 16KB and 32KB
chunk sizes. Using Rabin fingerprinting with the 8KB chunk
size, 22.1% of chunks appear at least twice, as compared to
25.1% with fixed 8KB chunks. Rabin fingerprinting with the
16KB chunk size causes 25.4% of chunks to appear at least
twice, as compared to 20.8% with fixed 16KB chunks. This
is because, for 16KB and 32KB chunking schemes, Rabin
fingerprinting of the VM images in our data set produced
chunks with standard deviations of 12.58KB and 9.74KB
respectively, whereas specifying a maximum size produced
chunks with a standard deviation of 0.01KB for the 8KB
chunking scheme. Thus, we find that increasing the vari-
ability of the chunk size increases the level of duplication in
Rabin fingerprinting when compared to fixed size chunking.
Based on these results, we conclude that for Rabin finger-
printing to outperform fixed size chunking, the maximum
chunk size should either not be specified, or should be set
to a large value (e.g. minimum + 2 × std. deviation) when
absolutely necessary (e.g. in caching middleware).

3.3 Duplication Across VM Images

 0

 2

 4

 6

 8

 10

 12

 14

2 3 4 5 6 7

P
er

ce
nt

ag
e

of
 c

hu
nk

s

Number of distinct images

4KB
8KB

16KB
32KB
64KB

(a) Inter-image duplication with fixed size chunk-
ing

 0

 1

 2

 3

 4

 5

 6

 7

 8

2 3 4 5 6 7

P
er

ce
nt

ag
e

of
 c

hu
nk

s

Number of distinct images

8KB Rabin
16KB Rabin
32KB Rabin

(b) Inter-image duplication with Rabin finger-
printing

Figure 2: Duplication between VM images

In Figure 1, we analyzed duplication of chunks within and

between VM images. Figure 2 quantifies the percentage of
chunks that are duplicated between VM images. Figure 2
plots the percentage of unique non-zero chunks that are com-
mon to x VM images, where 1 ≤ x ≤ 7 . The percentage of
chunks common to 8 VM images or more is too low (below
0.5%), and therefore not included in Figure 2. We would like
to emphasize that Figure 2 is a popularity distribution, and
not a CDF, the chunks that are common to x images are not
included in calculating the percentage for x+1. We observe
from Figure 2(a) that: (1) Even with fixed size chunking,
up to 12.15% of chunks are common to 2 images, and up to
6.79% of chunks are common to 4 images. (2) For each value
x on the X-axis, with fixed size chunking, the percentage of
chunks common to x VM images decreases as the size of

the chunk increases from 4KB to 64KB. (3) Except for 4KB
chunks, for other chunk sizes, the percentage of chunks com-
mon to x images decreases as x increases. From Figure 2(b),
we observe a similar trend to Figure 1. When compared to
fixed size chunking, using Rabin fingerprinting increases the
percentage of chunks common to two images or more, only
when the maximum chunk size is not specified, i.e. in the
case of our 16KB and 32KB Rabin fingerprinting schemes.

3.4 Compression Ratio with the Growth of Im-
age Repository

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 150 200 250 300 350 400 450 500 550

C
om

pr
es

si
on

 r
at

io

Number of generated images

4KB
8KB

16KB
32KB
64KB

(a) Compression ratio with fixed size chunking schemes

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 150 200 250 300 350 400 450 500 550

C
om

pr
es

si
on

 r
at

io

Number of generated images

8KB-Rabin
16KB-Rabin
32KB-Rabin

(b) Compression ratio with Rabin fingerprinting
schemes

Figure 3: The overall compression ratio changing
with the growth of the image repository

In this subsection, we analyze the impact of similarity on
the size of the repository used to store VM images. Com-
pression ratio for a set of VM images is defined as

1− |Unique chunks|
|Non−zero chunks|

.

Figure 3 illustrates the change in compression ratio as
more images are added to the repository. We measure the
compression ratio at five evenly-spaced points during the
growth of the repository. The image repository we use pro-
vides the creation time for each image, enabling us to pre-
serve the order of addition of images in the results presented
in Figure 3. From Figure 3(a), we observe that fixed size
chunking performs relatively well with compression ratios of
up to 0.69 in the case of 4KB chunking scheme. Even 8KB
and 16KB fixed size chunking schemes attain compression
ratios above 0.5. Following the trends in overall dedupli-
cation, compression ratio decreases with increasing chunk
size.

We observe from Figure 3(b) that the compression ra-
tios of 16KB and 32KB Rabin fingerprinting schemes are
higher than their fixed-size counterparts, but that of the
8KB scheme is lower. Also, compression ratio does not in-
crease monotonically as the number of VM images in the

repository is increased, for example, between images 421-
525 the compression ratio decreases for both fixed and Rabin
chunking schemes. The trend in compression ratio depends
on the number of unique chunks contained in the images
added.

3.5 Similarity at Different Positions in Image

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

0-25 25-50 50-75 75-100

C
om

pr
es

si
on

 r
at

io

Part of the VM image

4KB
8KB

16KB
32KB
64KB

(a) Compression ratio with fixed size chunking

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

0-25 25-50 50-75 75-100

C
om

pr
es

si
on

 r
at

io

Part of the VM image

8KB Rabin
16KB Rabin
32KB Rabin

(b) Compression ratio with Rabin fingerprint-
ing schemes

Figure 4: Compression ratio in different regions of
the image address space. “0-25”on the X-axis means
the first 25% of the image.

In this section, we examine whether the overall similarity
level varies while considering chunks in different portions of
images. For this experiment, we divide non-zero chunks into
four bins, where each bin corresponds to chunks occurring
in a quarter of the image. A chunk may belong to more than
one bin. We then measure the compression ratio consider-
ing the chunks in each bin, corresponding to all the chunking
schemes. The results are shown in Figure 4. For both fixed-
size chunking and Rabin fingerprinting, we observe that the
compression ratio is the highest among chunks in the first
quarter of the images, and decreases towards the later por-
tions of the image. This decrease, however, is very low in the
case of the 4K fixed size chunking scheme – the compression
ratio is approximately 0.7 among chunks in all bins. This
indicates that with larger chunk sizes, which are more appli-
cable to caches, it is promising to use position-based cache
eviction mechanisms and give earlier portions of an image
higher priority to stay in the cache. Also, with Rabin finger-
printing, the compression ratio for 8KB is worse than that
of 16KB and 32KB in all portions of the image. This is be-
cause, as mentioned earlier in Section 3.1, the 8KB Rabin
fingerprinting scheme used a maximum chunk size of 8.5KB.

3.6 Pairwise Similarity between Chunks
To observe the affinity between image chunks that often

appear together in the same image, we conduct a pairwise
similarity study of all the distinct chunks appearing in the
525 images. The pairwise similarity between chunks A and

B is defined to be S(A,B) = |C(H(A),H(B))|
|H(A)|

, where H(A)

and H(B) are the sets of VM images containing chunk A

and B, and C(H(A),H(B)) is the intersection of H(A) and
H(B), or in other words, the set of images containing both
A and B. A similar definition is used in [12].

Figure 5(a) presents the CDF of chunk pairwise similar-
ity. Due to the large number of chunks, we only present
the results for “popular” chunks that appear at least 100,
500, or 1000 times depending on the chunking scheme. We
can predict the pairwise similarity for “unpopular” chunks is
low (almost zero) because they appear less frequently and
most of them never appear in the same VM images (that
is, |C(H(A),H(B))| = 0). Considering the pairwise similar-
ity as defined above depends |H(A)|, its value is relatively
higher when A only appears in a few images. Therefore, we
use Figure 5(b) to show the absolute number of images that
a pair of chunks appear together in. In both figures, we can
observe a sudden increase in the CDF curve, indicating a
small percentage of chunks with high similarity among each
other.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 0.2 0.4 0.6 0.8 1

P
er

ce
nt

ag
e

of
 c

hu
nk

s

Pair-wise similarity

4KB
16KB
64KB

rabin-16KB
rabin-32KB

(a) Pairwise similarity

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 50 100 150 200 250 300 350 400 450 500

P
er

ce
nt

ag
e

of
 c

hu
nk

s

Number of common VM images

4KB
16KB
64KB

rabin-16KB
rabin-32KB

(b) Number of common images

Figure 5: CDF of pairwise chunk similarity for the
popular chunks

3.7 Pairwise Similarity between Images

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 0.2 0.4 0.6 0.8 1

P
er

ce
nt

ag
e

of
 im

ag
es

Pairwise similarity

4KB
16KB
64KB

rabin-16KB
rabin-32KB

Figure 6: CDF of pairwise similarity among VM
images

In this section, we examine the pairwise similarity between
any two VM images, i.e., the number of common chunks ap-
pearing in both images. Similar to chunk pairwise similarity,
we define the similarity between two VM images A and B

to be S(A,B) = |C(H(A),H(B))|
|H(A)

|, where H(A) and H(B) are

the set of chunks contained in VM images A and B, respec-
tively, and C(H(A),H(B)) is the set of common chunks in
A and B.

Since each image contains a large number of chunks, cal-
culating the pairwise similarity between each pair of images
requires extremely large amount of computation. There-
fore, we sample the whole VM image set and select 185 ran-
dom images to conduct pairwise similarity study. Figure 6
shows the CDF of pairwise similarity using different chunk-
ing schemes. Figure 6 reflects trends observed earlier with
Figure 1, i.e., a smaller chunk size leads to greater pairwise
similarity. The maximum pairwise similarity is obtained by
using 4KB fixed size chunking, but it is interesting to note
that 16KB Rabin fingerprinting also performs reasonably
well – approximately 10% of VM have pairwise similarity
higher than 53%.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 20 40 60 80 100 120 140 160 180 200

M
ed

ia
n

S
im

ila
rit

y

VM Image ID

Figure 7: Median similarity for each VM image (in
ascending order)

We further explore the distribution of VM image pairwise
similarity. We find out that the similarity between VM im-
ages is not uniformly distributed. We use 4KB as an exam-
ple to show how VM image pairwise similarity varies across
VM images and the distribution pattern can be applied to
chunks schemes except the similarity is lower. For each VM
image, Figure 7 shows the median of its pairwise similari-
ties with the other 184 images using 4KB fixed size chunking
and all these VM images are sorted in the ascending order of
its median similarity. It can be seen that there are around
40 images with median similarity level of above 70%. In
an intelligent cache management mechanisms, those images
will be given higher priority since their content is useful in
reconstructing other images.

4. CONCLUSIONS
In this paper, we have conducted an empirical study of a

large collection of VM images (525 in toal) from a produc-
tion cloud using black-box similarity detection techniques.
One of the key conclusions of our analysis is that fixed size
chunking works very well. By using the right chunk size, it is
possible to detect significant duplication among VM images,
and to obtain very good compression ratios (up to 80%). For
fixed size chunking, the level of duplication decreases as the
chunk size increases. But from a storage systems stand-
point, even 8KB and 16KB chunking schemes yield reason-

ably good compression ratios. For Rabin fingerprinting, the
key to detecting duplication is to avoid using a maximum
chunk size. We also observe that the duplication is maxi-
mum at the beginning of the image and decreases towards
the end.

Overall, the data favor the design and implementation of
smart VM image management middleware. The similarity
among VM images, and the knowledge of image clusters can
be leveraged to design smart image distribution schemes,
which take the data center topology into account and help
VM provisioning, cloning and migration. The presence of
popular chunks common to many VM images also support
the use of CDN-like image distribution schemes. The in-
creasing similarity between VM images can also be lever-
aged to design hypervisor-level caches which avoid redun-
dant data transfer during provisioning and execution.

5. ACKNOWLEDGEMENTS
The authors wish to thank Xiaolan Zhang, Todd Mum-

mert, Darrell Reimer and Vasanth Bala for their suggestions
and help with the Mirage VM image format and repository.

6. REFERENCES
[1] A. Swartz and L. Siri. Turnkey Linux Virtual

Appliance Library. See
http://www.turnkeylinux.org/.

[2] Amazon Web Services (AWS) Inc. Elastic Compute
Cloud (EC2). See http://aws.amazon.com. VM image
data retrieved from an author’s AWS console on Aug
7, 2011.

[3] G. Ammons, V. Bala, T. Mummert, D. Reimer, and
Z. Xiaolan. Virtual machine images as structured
data: The mirage image library. In HotCloud ’11,
Portland, OR, June 2011.

[4] B. H. Bloom. Space/time trade-offs in hash coding
with allowable errors. Commun. ACM, 13.

[5] A. T. Clements, I. Ahmad, M. Vilayannur, and J. Li.
Decentralized deduplication in san cluster file systems.
USENIX’09.

[6] D. Reimer and A. Thomas and G. Ammons and
T. Mummert and B. Alpern and V. Bala. Opening
Black Boxes: Using Semantic Information to Combat
Virtual Machine Image Sprawl. In VEE ’08.

[7] IBM. Tivoli Virtual Deployment Engine (VDE) Beta.

[8] K. Jin and E. L. Miller. The effectiveness of
deduplication on virtual machine disk images. In
SYSTOR’09.

[9] D. T. Meyer and W. J. Bolosky. A study of practical
deduplication. FAST’11.

[10] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli,
S. Soman, L. Youseff, and D. Zagorodnov. The
eucalyptus open-source cloud-computing system.
CCGRID ’09.

[11] H. Pucha, D. G. Andersen, and M. Kaminsky.
Exploiting similarity for multi-source downloads using
file handprints. NSDI’07.

[12] K. Tangwongsan, H. Pucha, D. G. Andersen, and
M. Kaminsky. Efficient similarity estimation for
systems exploiting data redundancy. INFOCOM’10.

[13] VMWare Inc. vSphere Data Center Virtualization. See
http://www.vmware.com/products/vsphere/.

http://www.turnkeylinux.org/
http://aws.amazon.com
http://www.vmware.com/products/vsphere/

	Introduction
	Related Work
	Empirical Analysis
	Methodology and Data Selection
	Overall Chunk Duplication
	Duplication Across VM Images
	Compression Ratio with the Growth of Image Repository
	Similarity at Different Positions in Image
	Pairwise Similarity between Chunks
	Pairwise Similarity between Images

	Conclusions
	Acknowledgements
	References

