
VMAR: Optimizing I/O Performance and Resource

Utilization in the Cloud

Zhiming Shen, zshen@cs.cornell.edu, Cornell University ⋆

Zhe Zhang, Andrzej Kochut, Alexei Karve, Han Chen, Minkyong Kim
Hui Lei, Nicholas Fuller

{zhezhang,akochut,karve,chenhan,minkyong,hlei,nfuller}@us.ibm.com
IBM T. J. Watson Research Center

Abstract

A key enabler for standardized cloud services is the encapsulation of software
and data into VM images. With the rapid evolution of the cloud ecosystem, the
number of VM images is growing at high speed. These images, each containing
gigabytes or tens of gigabytes of data, create heavy disk and network I/O work-
loads in cloud data centers. Because these images contain identical or similar
OS, middleware, and applications, there are plenty of data blocks with duplicate
content among the VM images. However, current deduplication techniques can-
not efficiently capitalize on this content similarity due to their warmup delay,
resource overhead and algorithmic complexity.

We propose an instant, non-intrusive, and lightweight I/O optimization layer
tailored for the cloud: V irtual M achine I/O Access Redirection (VMAR). VMAR
generates a block translation map at VM image creation / capture time, and
uses it to redirect accesses for identical blocks to the same filesystem address
before they reach the OS. This greatly enhances the cache hit ratio of VM I/O
requests and leads to up to 55% performance gains in instantiating VM operating
systems (48% on average), and up to 45% gain in loading application stacks (38%
on average). It also reduces the I/O resource consumption by as much as 70%.

1 Introduction

The economies of scale of cloud computing, which differentiates it from tran-
sitional IT services, comes from the capability to elastically multiplex different
workloads on a shared pool of physical computing resources. This elasticity is
driven by the standardization of workloads into moveable and shareable com-
ponents. To date, virtual machine images are the de facto form of standard
templates for cloud workloads. Typically, a cloud environment provides a set of
“golden master” images containing the operating system and popular middle-
ware and application software components. Cloud administrators and users start
with these images and create their own images by installing additional compo-
nents. Through this process, a hierarchy of deviations of VM images emerges. For

⋆ This work was conducted when Zhiming Shen was an intern at IBM and a Ph.D.
student at North Carolina State University.

example, in [24], Peng et al. have studied a library of 355 VM images and con-
structed a hierarchical structure of images based on OS and applications, where
the majority of images contain Linux with variation only on minor versions (i.e.,
v5.X).

Today’s production cloud environments are facing an explosion of VM im-
ages, each containing gigabytes or tens of gigabytes of data. As of August 2011
Amazon Elastic Compute Cloud (EC2) has 6521 public VM images [4] (data
on private EC2 VM images is unavailable). Storing and transferring these im-
ages introduces heavy disk and network I/O workloads on storage and com-
pute/hypervisor servers. On the other hand, the evolutionary nature of the VM
“ecosystem” determines that different VM images are likely to contain identical
chunks of data. It has been reported that a VM repository from a production
cloud environment contains around 70% redundant data chunks [15]. This has
indicated rich opportunities to deduplicate the storage and I/O of VM images.

!"#$"%&!"#$"%&

'()*+&,-&

./,0& ./,-&

1!2$"&34)#2$"&

'()*+,0&

34)#2$"&5"%67(8*29):&

'()*+&,-&'()*+&,0&

;2$"&

<2*="&

/"#$"%&

'()*+&
'()*+&,-&'''())**++&,,--&

*+&
'()*+,0&''())**++,,00&

'(

!"#$"%&!"#$"%&

'()*+&,-&

./,0& ./,-&

1!2$"&34)#2$"&

'()*+,0&

/"!)#>&5"%67(8*29):&

'()*+&,-&'()*+&,0&

;2$"&

<2*="&

/"#$"%&

'()*+&

!"#$"%&

'()*+ -''(())**++ -''(())**++ -
#$"%&

!"#$"%&

'()*+ 0''(())**+++ 00''(())**+++ 00
/"#$"#$

'()*+&,-&

./,0& ./,-&

1!2$"&34)#2$"&

'()*+,0&

./?@&

'()*+&,0&

;2$"&

<2*="&

'()*+&,-&

@"%8#"*4"%&

8:892(&%242&

A)B&

C4"2%>&C424"&

%242&A)B&

D8#462(&%242&A)B&E7=>C8*2(&

#"C)6#*"C&:"D"#&2(()*24"%F&

Fig. 1. Comparison of storage deduplication, memory deduplication, and VMAR.

To exploit this content redundancy, storage deduplication techniques have
been actively studied and widely used [10, 11, 12, 13, 21, 26, 31]. As illustrated
in Figure 1, storage deduplication mostly works on the block device layer and
merges data blocks with identical content. The scope of storage deduplication
is mainly to save storage capacity rather than to optimize the performance and
resource consumption of I/O operations. As a matter of fact, most of them cause
various degrees of overhead to both write and read operations.

On the other hand, memory deduplication techniques [5, 7, 16, 18, 28, 29]
save memory space by scanning the memory space and compressing identical
pages. They also reduce the I/O bandwidth consumption by improving cache hit
ratio. However, existing memory deduplication methods suffer from 2 fundamen-
tal drawbacks when applied to VM I/O optimization. First, savings can only be
achieved after a “warm-up” period where similar data chunks are brought in the

memory and become eligible for merging. Second, the merging process, includ-
ing content identification, page table modification, as well as the copy-on-write
logic (triggered when a shared page is updated), requires complex programs and
competes with primary applications for computing resources.

As an alternative, this paper proposes VMAR, an instant, non-intrusive, and
lightweight I/O optimization method tailored for cloud environments. VMAR is
based on the idea of V irtual M achine I/O Access Redirection. It is a lightweight
extension to the virtualization layer that can be easily deployed into the cloud
incrementally, and does not need any modification to the guest OS or application
stack. Compared to existing deduplication and I/O optimization methods, VMAR
has two key distinctions.

1. Ahead of I/O requests: VMAR detects identical data blocks when VM images
are captured and generates a block translation map. This way, even before
a VM starts running, VMAR has rich knowledge on its future I/O accesses
and is capable of linking them to other VMs’ data blocks. The data hashing
and comparison can be done lazily because a VM image is typically captured
when the VM using it has just been terminated. By batching these operations
at image capture time, VMAR also avoids keeping large amount of hash values
as deduplication metadata at compute nodes.

2. Upstream in the I/O architecture: Using the block translation map, VMAR
redirects VM read accesses for identical blocks to the same filesystem address
above the hypervisor Virtual Filesystem (VFS) layer, which is the entry point
for all file I/O requests into the OS. Since I/O operations are merged from
the upstream instead of on the storage layer, each VM has a much higher
chance to hit the file system page cache, which is already “warmed up” by
its peers. The reduction of warmup phase is critical to cloud user experience,
especially in development and test environments where VMs are short-lived.

We have implemented VMAR as a QEMU image driver. Our evaluation shows
that in I/O-intensive settings VMAR reduces VM boot time by 39 ∼ 55% (48%
on average) and application loading time by 24 ∼ 45% (38% on average). It also
saves up to 70% of I/O traffic and memory cache usage.

The reminder of this article is organized as follows. Section 2 provides a
background of VM image I/O. Section 3 details the design and implementation
of VMAR. Section 4 presents the evaluation results. Section 5 surveys related work
in storage and memory deduplication. Finally, section 6 concludes the paper.

2 Background

Most virtualization technologies present to VMs a virtual disk interface to em-
ulate real hard disks (also known asVM image). Virtual disks typically appear
as regular files on the hypervisor host (i.e., image files). I/O requests received
at virtual disks are translated by the virtualization driver to regular file I/O
requests to the image files.

Due to the large amount and size of VM images, it is impossible to store all
image files on every hypervisor host. A typical cloud environment has a shared

image storage system, which has a unified name space and is accessible by each
hypervisor host. One commonly used architecture is to set up the shared storage
system on a separate cluster from the hypervisor hosts, and connect the storage
and hypervisor clusters via a storage area network. Another emerging scheme is
to form a distributed storage system by aggregating the locally attached disks
of hypervisor hosts [14]. In either scenario, when a VM is to be started on a
hypervisor host, the majority of its image data is likely to be located remotely.

Network

Storage Server

Hypervisor

raw qcow2 dm-snapshot

local FS iSCSI NFS

Guest VM Instance

Virtual Disk

Image Files

Image

Encoding

Access

Methods

⇐
⇐

Fig. 2. Different configurations of virtual disks

Figure 2 illustrates different combinations of virtual disk configurations. First,
VM images can be stored in different formats. The most straightforward option
is the raw format, where I/O requests to the virtual disk are served via a simple
block-to-block address mapping. In order to support multiple VMs running on
the same base image, copy-on-write techniques have been widely used, where a
local snapshot is created for each VM to store all modified data blocks. The un-
derlying image files remain unchanged until new images are captured. As shown
in Figure 2, there are different copy-on-write schemes, including Qcow2 [1], dm-
snapshot, FVD [27], VirtualBox VDI [3], VMware VMDK [2], and so forth.

The second dimension of virtual disk configuration is how VM images are
accessed. One way is to pre-copy the entire image from the image storage to the
local file system of the target hypervisor before starting up a VM instance. Since
a typical VM image file contains multiple gigabytes, or even tens of gigabytes of
data, it may take a long time to start up a VM instance under this scheme. To
overcome this problem, an alternative method is to fetch parts of a VM image
from the storage system on-demand. Under the on-demand configuration, image
data may need to be fetched from the remote storage during runtime, causing
extra delay. However, as shown in [8], the runtime performance degradation is
very limited. Therefore, in the rest of the paper, we have focused on applying
VMAR on top of the on-demand configuration.

3 Design and Implementation

Figure 3 illustrates how VMAR interacts with a VM during its lifetime. First,
when a new VM image is inserted into the image repository, either copied from

!"#$%&'(%)*#+(%,-(%#$.%

+($(/#&(%&'(%*(&#%.#&#%

01/2#/.%&'(%*(&#%.#&#%&1%

&'(%"1*34&(%$1.(%2'($%&'(%

)*#+(%)5%/(64(5&(.%%%

7/(#&(%#%-1+)"#-%)*#+(%,-(%

45)$+%&'(%*(&#%.#&#%

!&#/&%&'(%89%45)$+%&'(%-1+)"#-%

)*#+(%,-(%#5%&'(%:#";)$+%,-(%

1<%&'(%=7>?@%)*#+(%

A'(%89%5&#/&5%/4$$)$+%#$.%

&'(%#""(55(5%&1%&'(%%:#";)$+%

,-(%#/(%/(.)/("&(.%

!"#$%&'()*#$%&

+)",-(%&.)/%&7#3&4/)$+%#%$(2%

)*#+(%,-(%
A'(%89%,$)5'(5%/4$$)$+%#$.%

)&5%)*#+(%)5%"#3&4/(.%

B/1C)5)1$%$(2%89%

Fig. 3. Flow of VMAR

external sources or captured from the disk of a VM, VMAR compares it against
the existing images in the repository. It then generates the meta-data of the new
image, including a block map that identifies common blocks between this image
and other images in the repository. Section 3.1 discusses details of the block map
generation process. When a new VM is created from the base image, the meta-
data is forwarded to the compute node, and an image in VMAR format is created.
With the VMAR images serving as the backing files for the Qcow2 images, I/O
accesses to VM images are redirected and consolidated. Section 3.2 describes
the access redirection mechanism. Finally, Section 3.3 presents techniques to
optimize block map size and lookup performance.

3.1 Hash-based Block Map Generation

The block map generator of VMAR uses 4 KB blocks as the base unit. Each data
block is identified by its hash value as the fingerprint. In capturing the content
similarities among VM images, we leverage the concept of metadata clusters
proposed in [17]. Each cluster represents the set of blocks that are common
across a subset of images. The main benefit of using clusters in VMAR is that
they greatly facilitate the search of all VM images having content overlaps with
a given image. Therefore, when an image is modified or deleted from the image
repository, it is easy to identify entries in the block map that should be updated.

For completeness we first briefly describe the concept of metadata clusters.
Consider a simple example of three images: Image-0, Image-1 and Image-2 as
shown in Fig. 4. In this illustration, CL-001, CL-010, CL-100 are singleton clus-
ters, containing the blocks only from Image-0, 1 and 2, respectively. For example,
block with hash G is unique to Image-0. CL-011 is the cluster with blocks from
Image-0 and 1, which have hash values E and F. We use subscripts to denote
identical blocks within an image. For example, hash value C appears in Image-0
3 times, as C1, C2 and C3.

When a new image is added to the library, the system computes the SHA1
hash for each block and compare it against existing clusters. Then each cluster

Illustration of Clusters with Three Images

Image-2 {A,C
1
,D,K,C

2
,L,C

3,
M}

Clusters consist of metainformation about unique blocks shared by imagesFig. 4. Illustration of clusters for three example images.

is divided into two new clusters: one that contains the new block and another
one that doesn’t. The hash values in the new images that do not belong to the
any current clusters are put into a new singleton cluster. A certain hash value
can appear in multiple images. The block mapping protocol should be consis-
tent and and ensure all requests for identical blocks are redirected to the same
address. For this purpose we always use the image with the smallest sequence
ID as the mapping destination. Alternative consistent mapping protocols can be
considered as future work – for instance, the least fragmented image [20] or the
most used image can be used as the target. These optimizations can potentially
improve I/O sequentiality.

Hash
Contained

images
Block list

C

Image-0 0,1,5
Image-1 2
Image-2 1,4,6

D

Image-0 2
Image-1 4
Image-2 2

Fig. 5. Meta-data of cluster CL-111

Block

number
Hash Cluster

Target

image

Target

block number

0 A CL-110 Image-1 0
1 B CL-010 Image-1 1
2 C CL-111 Image-0 0
3 A CL-110 Image-1 0
4 D CL-111 Image-0 2
5 E CL-011 Image-0 4
6 F CL-011 Image-0 6

Fig. 6. Block map for Image-1

Fig. 5 illustrates the meta-data of cluster CL-111. Cluster CL-111 contains
two hash values that are shared by all three images, so the accesses to any block
belonging to CL-111 should be redirected to Image-0, which has the smallest
ID. It is possible that there are multiple blocks having the same hash value in
Image-0, such as the blocks with hash value C. In this case, we always map them
to the block with the smallest block number. For example, in the illustrated case,
any block with hash value C will be mapped to block 0 in Image-0. Given the
hash value of a block, we can quickly identify the target image and block we
should map by looking up the hash table in each cluster. Fig. 6 shows the map
for Image-1 and the cluster meta-data we use to construct the map.

The method update map in Fig. 7 is executed when a VM image is updated.
It search for all other images having blocks pointing to this image with the cluster

function update block(s, block)
hash prev: previous hash value of the block;
hash new: new hash value of the block;
add s to update list;
let c = find cluster from hash(hash prev);
remove block in the block list of hash prev for image s in c;
if the updated block list becomes empty:

move the entry of hash prev in c to the corresponding cluster;
if the minimal image ID containing hash prev is changed:

for each image t that contains hash prev do:
add t to update list;

end for;

let c′ = find cluster from hash(hash new);
if c′ = None:

add block into singleton of s;
else:

add block to c′;
if s does not contain c′:

move the entry of hash new in c′ to the corresponding cluster;
if the minimal image ID containing hash new is changed:

for each image t that contains hash new do:
add t to update list;

end for;

for each image t in update list do:
re-construct the block map for image t;

end for;

end function;

Fig. 7. Pseudo-code of updating an image.

data structure, and consequently update the map entries. A hash value can also
be moved to another cluster if the ownership is changed due to the update.

Finally, to illustrate the offline computational overhead for creation of clusters
and map, that is a one time cost to prepare the image library for redirection, we
have run an experiment on a VM with 2.2 GHz cpu and 16 GB memory. We have
used an image library with 84 images with total size of 1.5 TB. The images were
a mix of Windows and Linux images of varying sizes ranging between 4 GB and
100 GB (used in a production Cloud). This image library resulted in creation of
453 clusters. The total time to create the clusters and mappings for all images
was 15 minutes.

3.2 I/O Deduplication through Access Redirection

Figure 8 illustrates the overall architecture of VMAR’s access redirection mecha-
nism. The VMAR image serves as the backing file of the Qcow2 image. When a
read request R is received by the QEMU virtual I/O driver, the copy-on-write
logic in Qcow2 first checks whether it is for base image data or VM private/dirty
data. If R is for VM private/dirty data, Qcow2 forwards the request to a local
copy-on-write file. If R is for base image data, the Qcow2 driver forwards the
request to the backing image. In both cases, R is translated as a regular file
request which is handled by the VFS layer of the host OS. Unless the file is
opened in direct I/O mode, R will be checked against the host page cache before
being sent to the host hard disk drive.

The VMAR image driver implements address translation and access redirection.
When a read request R is received, VMAR looks up the block map introduced
in Section 3.1 to find the destination addresses of the requested blocks. If the
requested blocks belong to different base images, or are noncontinuous in the

Image 1 Image 2 Image 3

Image 1 Image 2 Image 3

Compute node

Image repository

Block map

generator

Image remote access protocol (NFS, iSCSI, etc.)

Guest OS/APP

KVM process

QEMU virtio

Qcow2 driver

VMAR driver

Qcow2

image

VMAR

image

Read/write requests Dirty

blocks

Image

meta-data

Read requests

VFS

VM

Qcow2

Raw

Fig. 8. Architecture of VMAR

same base image, then R is broken down into multiple smaller “descendant”
requests. The descendant requests are sent to the corresponding base images.
Upon the completion of all descendant requests, the VMAR driver returns the
whole buffer back to the Qcow2 driver.

The descendant requests are issued concurrently to maximize throughput.
We leverage the asynchronous I/O threadpool in the KVM hypervisor to issue
concurrent requests. To serve a request R, the application’s buffer is divided into
multiple regions and a set of I/O vectors are created. Each I/O vector represents
a region of the buffer and fills the region with the fetched data. A counter for the
application buffer keeps track of the number of issued and completed descendant
requests. The last callback of the descendant request will return the buffer back
to the application.

VMAR updates the inode numbers of the descendant requests of R to the
destination / redirected base image files before sending them to the host OS
VFS layer and checked against the page cache. If the corresponding blocks in
the destination files have been read into the page cache by other VMs, the new
requests will hit the cache as “free riders”. As discussed in Section 3.1, if a
block appears in multiple images, the block map entry always points the image
with the smallest ID. Therefore, all requests for the same content are always
redirected to the same destination address, which increases the chance of “free
riding”.

VMAR redirects accesses to VM images, but not to private/dirty data. The
reason is twofold. First, the data generated during runtime has a much smaller

chance to be shared than that of the data in the base images, which contain
operating systems, libraries and application binaries. Second, deduplication of
private/dirty data incurs significant overhead because the content of each newly
generated block has to be hashed and compared to existing blocks during run-
time.

3.3 Block Map Optimizations

Block map size reduction A straightforward method to support redirection
lookup is to create a block-to-block map. Base on the offset of the requested
block in the source image, we can calculate the position of its entry in the block
map directly. Each map entry has two attributes: {IDtarget, Blocktarget}. The
lookup of block-to-block map is fast. However, the map size will grow linearly
with the image size. For example, Figure 9 shows that the map size for a 32 GB
image can grow up to 64 MB before optimization.

4 6 8 10 32
0

10

20

60

66

B
lo

c
k
 m

a
p
 s

iz
e
 (

M
B

)

Image size (GB)

 Block-to-block map

 VMAR

Fig. 9. Block map size optimization.

1 10 100 1000 10000
0

25

50

75

100

C
u
m

u
la

ti
v
e
 p

e
rc

e
n
ta

g
e
 o

f
th

e
 v

o
lu

m
e
 (

%
)

Number of blocks represented in a map entry

64 2045

Fig. 10. CDF of the volume in the clus-
ters with different sizes.

To reduce the map size and increase the scalability, we merge the map entries
for the blocks that are continuous in the source image, and are also mapped
continuously into the same target image. Since they are mapped continuously, we
can use a single entry with four attributes to represent all of them: {offsetsource,
length, IDtarget, offsettarget}. Note that the length that each entry represents
may be different. Thus, the lookup of the map requires checking whether a given
block number falls into the range represented by an entry.

To further reduce the map size, we also eliminate map entries for zero blocks.
If a block cannot find a corresponding entry in the map, it is a zero block. In this
case, the VMAR driver simply uses memset to create a zero-filled memory buffer.
This saves the time and bandwidth overheads of a full memory copy.

Figure 9 shows that after optimization, the map size for VMAR is reduced sig-
nificantly (mostly under 5 MB). In the VM images we have worked on, many
continuous clusters have been detected. This is because the common sharing
granularity between pairs of VM images is the files stored on their virtual disks.
For example, the ram-disk file of the kernel, application binaries and libraries.

Binary Indexed

binary

Indexed binary

+ Bloom filter

0

5

10

15

20

0.2
1.1

A
v
e
ra

g
e
 s

e
a
rc

h
 d

e
p
th

18.6

Fig. 11. Average binary search depth for each search scheme.

Figure 10 presents the cumulative percentage of the the number of blocks repre-
sented in a single map entry. Map entries containing more than 64 blocks cover
around 75% of the blocks. Some “big” map entry covers a significant portion
of blocks. For example, map entries with a size more than 2,045 blocks covers
around 25% of blocks.

Block map lookup optimization After the above optimization for the map
size, each map entry represents different lengths. Thus, we cannot perform a
simple calculation to get the position of the desired map entry. A linear search
is inefficient. Note that the block map is sorted according to the source block
offset. So we adopt binary search as the basic lookup strategy.

Since we still have many entries in the map, the depth of the binary search is
typically high. So we have applied two mechanisms to further reduce the lookup
time. First, we create an index to divide a large map into equal-sized sections.
Each index entry has two pointers pointing the first and the last entry in the map
that covers the corresponding section. Since the sections are equal-sized, given
a block offset we can directly calculate the corresponding index entry. From the
index entry, we can get the range within which we should perform binary search.
This mechanism reduces search depth significantly. Second, to avoid searching
to the maximum depth for zero blocks, we use a bloom filter to quickly identify
them. Figure 11 shows the average search depth during the VM instantiation
and application loading stage. We can see that our optimization mechanisms
reduce the average search depth from 18.6 to 0.2.

4 Evaluation

4.1 Experiment setup

We have implemented VMAR based on QEMU-KVM 0.14.0, and conducted the
experiments using two physical hosts. Each host has two Intel Xeon E5649 pro-
cessors (12 MB L3 Cache, 2.53 GHz) with 12 hyper-threading physical cores (24
logical cores in total), 64 GB memory, and gigabit network connection. The hosts
run Red Hat Enterprise Linux Server (RHEL) release 6.1 with kernel 2.6.32 and
libvirt 0.8.7. One host serves as the image repository and the other one is the
compute node on which the VMs will be created. The compute node accesses
the images repository using the iSCSI protocol.

To drive the experiments, we have obtained a random subset of 40 images
from a production enterprise cloud. The size of the images ranges from 4 GB
to over 100 GB. The VMs are instantiated using ibvirt. Each VM is configured
with two CPU cores, 2 GB memory, bridged network and disk access through
virtio in the Qcow2 format. 23 of the images run RHEL 5.5, and 17 of them run
SUSE Linux Enterprise Server 11.

The impact of VMAR on the VM instantiation performance is assessed by
starting VMs from the images and measuring the time it takes before the VMs
can be accessed from the network. This emulates the service response time that
a customer perceives for provisioning new VMs in an Infrastructure as a Service
(IaaS) cloud. In each image, we have added a simple script to send a special net-
work packet right after the network is initialized. Most time is spent on booting
up the OS and startup services. A daemon on the compute node waits for the
packet sent by our script and records the timing.

After VM instantiation, another time-consuming step in cloud workload de-
ployment is to load the application software stack into the VM memory space.
This can take even longer in complex enterprise workloads, where a software in-
stallation (e.g., database management system) contains hundreds of megabytes
or gigabytes of data. Due to the lack of semantic information on the production
images, we added four additional images into the repository. On each image,
we installed IBM DB2 database software version X and WebSphere Application
Server (WAS) version Y , where X ∈ {9.0, 9.1} and Y ∈ {7.0.0.17, 7.0.0.19} 1.
These images run RHEL 6.0 and use the same VM configuration as other im-
ages. We have measured the application software loading time in the four images,
while instantiating other images as a background workload.

As discussed in section 2, our evaluation uses the on-demand policy as the
baseline configuration, where VM images stay in the storage server and the com-
pute node obtains required blocks through the iSCSI protocol. Besides VMAR we
have also included lessfs [19] and KSM [5] in the evaluation, which are widely
used storage and memory deduplication mechanisms for Linux. Therefore, the
rest of this section compares 4 configurations to the baseline: 1) VMAR used to
start VMs on compute node; 2) lessfs used on storage server to store VM im-
ages; 3) KSM used on compute node to merge memory pages (KSM is triggered
only when the system is under memory pressure, therefore only evaluated in such
settings); 4) lessfs (on storage server) +VMAR (on compute node). The first 3 con-
figurations represent the typical usage of the individual optimization techniques.
The fourth configuration explores using VMAR on top of storage deduplication to
save both storage and I/O resources.

In our experiments, the arrival of VM instantiation commands follows a Pois-
son distribution. Different Poisson arrival rates have been used to emulate vari-
ous levels of I/O workload. Each experiment is repeated three times and average
values are reported with the standard deviation as error bars.

1 DB2+WAS is commonly used in online transaction processing (OLTP) workloads.

4.2 Experiment results
This section shows the experiment results, including an analysis of content sim-
ilarity in the VM image repository we use, the results for VM instantiation and
application loading, and the overhead of VMAR.

1 20 40 60 80 100
0

20

40

60

80

100

C
u
m

u
la

ti
v
e
 p

e
rc

e
n
ta

g
e
 (

%
)

Number of duplicated blocks

(a) Block duplication in the whole repos-
itory

1 10 20 30 40
0

20

40

60

80

100

C
u
m

u
la

ti
v
e
 p

e
rc

e
n
ta

g
e
 (

%
)

Times a block appears in different images

(b) Inter-image duplication

Fig. 12. Image blocks similarity statistics.

Similarity in the image repository We first analyze the content similarity
among our 40 images. In this analysis, we only consider non-zero data blocks.
Figure 12(a) shows the CDF of the number of duplicated blocks in the entire
repository of 40 images. More than 60% of the blocks are duplicated at least
twice, and 10% of the blocks are duplicated more than eight times. This verifies
the intuition that duplicated blocks are common in the VM image repositories of
production clouds. A block can be duplicated within the same image, or across
different images. Figure 12(b) shows the CDF of of the number of times that a
block appears in different images. More than 50% of the blocks are shared by
at least two images. Around 25% of the blocks are shared by more than three
images. Therefore, opportunities are rich for VMAR to deduplicate accesses to
identical blocks.

VM instantiation Figure 13 shows the performance and resource consump-
tion of VM instantiation when different numbers of VMs are booted. In this
experiment, a new VM is provisioned every five seconds on average. During the
VM instantiation phase, the majority of the I/O workload is to load the OS into
the VM’s memory, causing few data re-accesses within a single VM. Therefore,
under the baseline configuration, almost every read request goes through the
network and the disk, and the data block eventually enters the memory cache
of the compute node. As shown in Figures 13(b) and 13(c), the amount of I/O
traffic and memory cache space usage are roughly the same, both increasing al-
most linearly with the number of VMs. Consequently, as shown in Figure 13(a),
the average time it takes for a VM to boot up is over 100 seconds. The boot
time increases when more VMs are booted, causing the disk and the network to
be more congested.

20 30 40
0

100

200

300

400

500

Number of VMs

B
o
o
t
ti
m

e
 (

s
)

 Baseline

 Lessfs

 Baseline+VMAR

 Lessfs+VMAR

(a) Boot time

20 30 40
0

3

6

Number of VMs

I/
O

 t
ra

ff
ic

 (
G

B
)

 Baseline

 Lessfs

 Baseline+VMAR

 Lessfs+VMAR

(b) I/O traffic

20 30 40
0

3

6

Number of VMs

M
e
m

o
ry

 c
a
c
h
e
d
 (

G
B

)

 Baseline

 Lessfs

 Baseline+VMAR

 Lessfs+VMAR

(c) Memory cached

Fig. 13. Comparison of performance and resource utilization in VM instantiation, with
different number of VMs.

With VMAR, each VM benefits from the data blocks brought into the hyper-
visor’s memory page cache by other VMs that are booted earlier. Therefore, the
average boot time is significantly reduced (by 39 ∼ 55%). Moreover, the average
boot time with VMAR decreases when more VMs are booted and the cache is
“warmer”. VMAR also reduces I/O traffic and memory consumption by 63 ∼ 68%,
by trimming unnecessary disk and network accesses up in the memory cache.
More importantly, the I/O traffic grows at a much slower rate than the baseline
because the amount of “unique” content in every incoming VM image drops
quickly as the hypervisor hosts more images. This is a critical benefit in resource
overcommitted cloud environments.

With lessfs, the I/O traffic and memory cache usage are about the same as
the baseline. This is because lessfs compresses data on the block storage layer,
which is below VFS and thus doesn’t change cache hit/miss events or the number
of disk I/O requests. The VM boot time is worse than the baseline, mainly
because it runs in the user space (based on FUSE), and incurs high context
switch overhead. Deduplication techniques implemented in the kernel could have

0.1 0.2 1
0

100

200

300

400

500

 VM arrival rate (VM/s)

B
o
o
t
ti
m

e
 (

s
)

 Baseline

 Lessfs

 Baseline+VMAR

 Lessfs+VMAR

(a) Boot time

0.1 0.2 1
0

3

6

 VM arrival rate (VM/s)

I/
O

 t
ra

ff
ic

 (
G

B
)

 Baseline

 Lessfs

 Baseline+VMAR

 Lessfs+VMAR

(b) I/O traffic

Fig. 14. Comparison of performance and I/O traffic in VM instantiation, with different
VM arrival rates.

High Medium Low
0

100

200

300

400

500

600

Memory pressure

B
o
o
t
ti
m

e
 (

s
)

 Baseline

 Lessfs

 KSM

 Baseline+VMAR

 Lessfs+VMAR

(a) Boot time

High Medium Low
0

3

6

9

Memory pressure

I/
O

 t
ra

ff
ic

 (
G

B
)

 Baseline

 Lessfs

 KSM

 Baseline+VMAR

 Lessfs+VMAR

(b) I/O traffic

Fig. 15. Comparison of VM boot time and I/O traffic in VM instantiation, with dif-
ferent available memory sizes.

smaller overhead, but similar to lessfs, they will not improve filesystem cache
performance and utilization. When lessfs+VMAR is used, the majority of I/O
requests hit the page cache of the compute node without reaching to lessfs at
all. This improves the boot time results. However, the degree of performance
improvement (7% on average) is much lower than the saving in I/O traffic (66.6%
on average). This is because both VMAR and lessfs break sequential I/O patterns,
thereby exaggerating the context switch and disk seek overhead. To mitigate
this issue, replica selection optimizations similar to [18] can be investigated as
interesting future work.

Figure 14 presents the performance and resource consumption of VM instan-
tiation under different VM arrival rates, while the total number of instantiated
VMs is fixed at 30. Figure 14(a) shows the average boot time when a new VM
is provisioned every {10 − 5 − 1} seconds on average. Since higher VM arrival

20 30 40
0

300

600

900

Number of VMs

A
p
p
lic

a
ti
o
n
 l
o
a
d
 t
im

e
 (

s
)

 Baseline

 Lessfs

 Baseline+VMAR

 Lessfs+VMAR

(a) Application load time

20 30 40
0

6

12

18

Number of VMs

I/
O

 t
ra

ff
ic

 (
G

B
)

 Baseline

 Lessfs

 Baseline+VMAR

 Lessfs+VMAR

(b) I/O traffic

Fig. 16. Comparison of performance and I/O traffic in application loading, with dif-
ferent number of VMs.

rates lead to more severe I/O contentions, the average boot time with the base-
line scheme increases quickly. In contrast, with the help of VMAR, a lot of disk
accesses from the VMs hit the memory cache and return directly without trigger-
ing any real device access. Therefore, in comparison to the baseline, the average
boot time with VMAR is much lower, and increases slowly with the arrival rate.
Figure 14(b) shows that the VM arrival rate does not significantly affect the
total amount of I/O traffic 2. This confirms that the increase in boot time under
baseline is due to the increased I/O contention, which is mitigated by VMAR.
Finally, it can be observed that the overhead of lessfs grows fast with the level
of I/O contention.

Figure 15 presents the performance and I/O traffic of VM instantiation with
different available memory sizes on the host. In this experiment, the number of
VMs is set to 30 and the arrival rate is set to 0.2. From previous experiments,
which uses all 64 GB memory, we observe that the memory usage of the host
during runtime is around 11 GB, 4 GB of which is for caching. Thus, we test
the scenarios where the available memory size is 9 GB and 11 GB respectively.
Under all configurations, the instantiation time is insensitive to memory pressure,
and the reason is twofold. First, VMAR has consolidated the I/O traffic and only
requires very small amount of memory (∼1.5 GB) to cache all I/O requests,
which can be satisfied even under high memory pressure. Second, without VMAR,
data re-access rate is very low, which diminishes the benefit of abundant memory.
The page sharing counter ofKSM indicates that it saves∼ 3.5 GB of memory by
compressing similar pages. However, because the saving is achieved after the data
blocks are loaded into memory, it incurs almost the same amount of I/O traffic
as baseline, and therefore does not lead to notable performance improvement.

2 In the rest of this section, memory usage results will be omitted because they are
similar to the amount of I/O traffic.

0.1 0.2 1
0

300

600

900

 VM arrival rate (VM/s)

A
p
p
lic

a
ti
o
n
 l
o
a
d
 t
im

e
 (

s
)

 Baseline

 Lessfs

 Baseline+VMAR

 Lessfs+VMAR

(a) Application load time

0.1 0.2 1
0

5

10

15

 VM arrival rate (VM/s)

I/
O

 t
ra

ff
ic

 (
G

B
)

 Baseline

 Lessfs

 Baseline+VMAR

 Lessfs+VMAR

(b) I/O traffic

Fig. 17. Comparison of performance and I/O traffic in application loading, with dif-
ferent VM arrival rates.

High Medium Low
0

300

600

900

1200

1500

Memory pressure

A
p
p
lic

a
ti
o
n
 l
o
a
d
 t
im

e
 (

s
)

 Baseline

 Lessfs

 KSM

 Baseline+VMAR

 Lessfs+VMAR

(a) Application load time

High Medium Low
0

5

10

15

20

25

Memory pressure

I/
O

 t
ra

ff
ic

 (
G

B
)

 Baseline

 Lessfs

 KSM

 Baseline+VMAR

 Lessfs+VMAR

(b) I/O traffic

Fig. 18. Comparison of performance and I/O traffic in application loading, with dif-
ferent available memory sizes.

Application loading Figures 16, 17, and 18 show the results of application
loading performance and I/O traffic. Again, in Figure 16, {20 − 30 − 40} VMs
are booted with a fixed arrival rate of 0.2; in Figure 17, the number of VMs is set
to 30, and {10− 5− 1} VMs are booted every second; in Figure 18, 30 VMs are
booted at a rate of 0.2, under different memory pressures. As discussed above,
we replace 4 of the production images with 4 new images installed with different
versions of IBM DB2 and WAS, and only measure the application loading time
of the 4 images. Other VMs serve as the background workload.

Loading enterprise applications is an I/O intensive workload, where a large
number of application binaries and libraries are read into the memory. The 4
images we measure contain different versions of the same application stack, and
thus share a lot of data blocks. Therefore, the results demonstrate a similar

trend as that of the VM instantiation experiments. With the help of VMAR, the
average load time and I/O traffic are much lower, and increase at a much slower
pace with resource contention than the baseline. The lessfs scheme still causes
significant overhead to I/O performance. When the system is under memory
pressure, KSM is not able to reduce I/O traffic or improve performance.

Compared to lessfs, the lessfs+VMAR configuration improves application load-
ing time by 15% on average, which is more than twice the improvement in VM
instantiation time (7%). This is because in the application loading workload,
data sharing among images is in large sequential chunks, which enables VMAR to
redirect large I/O requests without creating too many descendants.

Random read Sequential read
0.0

0.5

1.0

N
o
rm

a
liz

e
d
 r

u
n
ti
m

e

 Raw

 VMAR

Fig. 19. Comparison of runtime for running random/sequential reading benchmark.

Runtime overhead VMAR intercepts each read request to the VM image and
incurs additional processing (address translation and redirection). We test this
overhead with both random and sequential I/O by issuing dd commands within
a VM, with 1 MB block size and direct I/O mode. For random I/O, 3,000 non-
zero blocks are read on random locations of the virtual disk. For sequential I/O,
a 350 MB non-zero file is read. To eliminate the impact of other factors, the
benchmarks run twice when the VM is idle. After the first run, all the data has
been brought into the host page cache. We measure the runtime of the second
run, which only copies the data from the host memory. Figure 19 shows the
runtime normalized to using a raw image. The result shows that the overhead
of VMAR is within 5% for sequential I/O and negligible for random I/O.

5 Related Work

This section surveys existing efforts on I/O resource optimization by leveraging
data content similarities in various workload scenarios.

5.1 Deduplicated Storage and File Systems

Deduplication for Backup Data Due to the explosive generation of dig-

ital data, deduplication techniques have been widely used to reduce the stor-
age capacity in backup and archival systems. In general, storage deduplication

techniques break each dataset (file or object) into smaller chunks, compare the
content of each chunk, and merge chunks with the same content. Much research
effort has been made to enhance the effectiveness and efficiency of these op-
erations [10, 11, 13, 21, 31]. For instance, Zhu et al. [31] have proposed three
techniques to improve the deduplication throughput, which improve the con-
tent identification performance, deduplicated storage layout, and metadata cache
management respectively. Meyer et al. [21] have provided the insight that dedu-
plication on the whole-file level can achieve about 3

4 of the space savings of
block-level deduplication, while significantly reducing disk fragmentations.

Deduplication for Primary Data Many recent papers have focused on
the deduplication of primary data, namely datasets supporting runtime I/O re-
quests [12, 18, 19, 23, 26]. They tackle the problem of I/O latency caused by
deduplication from different angles. In [12], a study has been presented to an-
alyze the file-level and chunk-level deduplication approaches using the dataset
of primary data collected from Windows servers. Based on the findings, a dedu-
plication system has been developed, where data scanning and compression are
performed offline without interfering with file write operations. Ng et. al have
proposed optimized metadata management schemes for inline deduplication of
VM images [23]. iDedup [26] has used a minimum sequence threshold to de-
termine whether to deduplicate a group of blocks, and thereby preserving the
spatial locality in the disk layout. DEDE [9] focuses on distributing the work-
load of duplicate detection to the cluster of compute notes. It also demonstrates
that the VM instantiation time can be significantly improved by improving the
storage array cache hit rate.

5.2 Memory Deduplication

Many techniques have been proposed to leverage the similarities among processes
or VMs running on a physical server and reduce their memory usage. Back in
1997, Disco [7] has introduced page sharing in NUMA multiprocessors. More
recently, VMware ESX Server [28] has proposed content-based page sharing, in
which pages with identical content can be shared by modifying the page table
supporting the VMs. When a shared page is modified, the copy-on-write logic
is triggered and a private copy of the page is created. Many optimizations have
been proposed to reduce the memory scanning overhead and increase sharing
opportunities [16, 18, 22, 25, 29].

Among the above techniques, Satori [22] and I/O Deduplication [18] are the
most relevant to VMAR. The sharing-aware block device in Satori and the content-
based cache in I/O Deduplication both capture short-lived sharing opportunities
by detecting similar pages at page loading time. However, Satori consolidates
pages belonging to different VMs by modifying the guest OS, while VMAR works
entirely on the host level and stays transparent to VM guests. I/O Deduplication
introduces a secondary content-based cache under the VFS page cache, making
it difficult to avoid duplicates across the two caching levels. As a matter of fact,
VMAR may complement both by providing the block maps as hints for identical
pages, which they need at page loading time.

6 Conclusion

In this paper we propose VMAR, which is a thin I/O optimization layer that
improves VM instantiation and runtime performance by redirecting data accesses
between pairs of VM images. By creating a content-based block map during
image capture time and always directing accesses of identical blocks to the same
destination address, VMAR enables VMs to give each other “free rides” when
bringing their image data to the memory page cache. Compared to existing
memory and I/O deduplication techniques, VMAR operates ahead of VM I/O
requests and upstream in the I/O architecture. As a result, VMAR incurs small
overhead and optimizes the entire I/O stack. Moreover, implemented as a new
image format, VMAR is a configurable option for each VM. This enables cloud
administrators to “test drive” it before complete deployment.

On top of the main access redirection mechanism, VMAR also includes two
optimizations of the block map. The first one is to reduce block map size by
merging contiguous map entries. The second one is to reduce the number of
block map lookup operations by using an index to quickly guide a request into
the correct region of the map. Experiments have demonstrated that in I/O-
intensive settings VMAR reduces VM boot time by as much as 55% and reduces
application loading time up to 45%.

VMAR is a disk image driver and does not rely on any specific CPU/memory
virtualization technology. Thus, it is straightforward to make it work with other
virtualization platforms such as Xen [6]. Currently VMAR works entirely on the
host level. As future work, we plan to integrate VMAR with our previous work on
VM exclusive caching [30] to achieve further savings on the VM level. We also
plan to evaluate VMAR in an image pool with a larger scale and more types of
operating systems, and explore adding a second level of redirection on the block
storage layer to enhance sequential I/O pattern.

References

[1] The QCOW2 Image Format. http://www.linux-kvm.org/page/Qcow2.
[2] Virtual machine disk format (VMDK). See http://www.vmware.com/

technical-resources/interfaces/vmdk.html.
[3] Virtualbox vdi image storage. http://www.virtualbox.org/manual/ch05.html.
[4] Amazon Web Services (AWS). Elastic Compute Cloud (EC2). http://aws.

amazon.com. VM image data retrieved from AWS console on 08/07/2011.
[5] Arcangeli, A., Eidus, I., and Wright, C. Increasing memory density by using

ksm.
[6] Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A.,

Neugebauer, R., Pratt, I., and Warfield, A. Xen and the art of virtual-
ization. In SOSP ’03.

[7] Bugnion, E., Devine, S., Govil, K., and Rosenblum, M. Disco: running
commodity operating systems on scalable multiprocessors. ACM Trans. Comput.

Syst. 15, 4.
[8] Chen, H., Kim, M., Zhang, Z., and Lei, H. Empirical study of application

runtime performance using on-demand streaming virtual disks in the cloud. ACM.

[9] Clements, A. T., Ahmad, I., Vilayannur, M., and Li, J. Decentralized dedu-
plication in san cluster file systems. In USENIX’09.

[10] Dong, W., Douglis, F., Li, K., Patterson, H., Reddy, S., and Shilane, P.
Tradeoffs in scalable data routing for deduplication clusters. In FAST’11.

[11] Dubnicki, C., Gryz, L., Heldt, L., Kaczmarczyk, M., Kilian, W., Strzel-
czak, P., Szczepkowski, J., Ungureanu, C., and Welnicki, M. Hydrastor:
a scalable secondary storage. In FAST ’09.

[12] El-Shimi, A., Kalach, R., Kumar, A., Oltean, A., Li, J., and Sengupta,
S. Primary data deduplication large scale study and system design.

[13] Guo, F., and Efstathopoulos, P. Building a high-performance deduplication
system. In USENIXATC’11.

[14] Gupta, K., Jain, R., Koltsidas, I., Pucha, H., Sarkar, P., Seaman, M., and
Subhraveti, D. Gpfs-snc: An enterprise storage framework for virtual-machine
clouds. IBM Journal of Research and Development 55, 6.

[15] Jayaram, K. R., Peng, C., Zhang, Z., Kim, M., Chen, H., and Lei, H. An
empirical analysis of similarity in virtual machine images. In Middleware ’11.

[16] Kim, H., Jo, H., and Lee, J. Xhive: Efficient cooperative caching for virtual
machines. IEEE Trans. Comput. 60 .

[17] Kochut, A., and Karve, A. Leveraging local image redundancy for efficient
virtual machine provisioning. IEEE Network Operations and Management Sym-

posium.
[18] Koller, R., and Rangaswami, R. I/o deduplication: Utilizing content similarity

to improve i/o performance. Trans. Storage 6, 3.
[19] Koutoupis, P. Data deduplication with linux. Linux Journal 2011, 207.
[20] Liang, S., Jiang, S., and Zhang, X. Step: Sequentiality and thrashing detection

based prefetching to improve performance of networked storage servers. p. 64.
[21] Meyer, D. T., and Bolosky, W. J. A study of practical deduplication. In

FAST’11.
[22] Mi lós, G., Murray, D. G., Hand, S., and Fetterman, M. A. Satori: enlight-

ened page sharing. In USENIX’09.
[23] Ng, C.-H., Ma, M., Wong, T.-Y., Lee, P. P. C., and Lui, J. C. S. Live

deduplication storage of virtual machine images in an open-source cloud. In Mid-

dleware’11.
[24] Peng, C., Kim, M., Zhang, Z., and Lei, H. Vdn: Virtual machine image

distribution network for cloud data centers. pp. 181–189.
[25] Sharma, P., and Kulkarni, P. Singleton: system-wide page deduplication in

virtual environments. ACM.
[26] Srinivasan, K., Bisson, T., Goodson, G., and Voruganti, K. idedup:

Latency-aware, inline data deduplication for primary storage. In FAST’12.
[27] Tang, C. Fvd: a high-performance virtual machine image format for cloud. In

USENIXATC’11.
[28] Waldspurger, C. A. Memory resource management in vmware esx server.
[29] Wood, T., Tarasuk-Levin, G., Shenoy, P., Desnoyers, P., Cecchet, E.,

and Corner, M. D. Memory buddies: exploiting page sharing for smart coloca-
tion in virtualized data centers. In VEE ’09.

[30] Zhang, Z., Chen, H., and Lei, H. Small is big: functionally partitioned file
caching in virtualized environments. In HotCloud’12.

[31] Zhu, B., Li, K., and Patterson, H. Avoiding the disk bottleneck in the data
domain deduplication file system. In FAST’08.

