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Abstract

The performance of distributed services is be-
coming increasingly variable due to changing
load patterns and mobile users. Current ap-
proaches — cluster-based, scalable services and
peer replication — solve only part of the problem.
The former applies only to end-service variability,
while the latter compromises safety and the abil-
ity to offer bounds on consistency of updates. We
propose fluid replication, the ability to create a
replica where and when it is most needed, as a
solution to this problem. In this paper, we present
our mechanisms for finding replica sites, balanc-
ing consistency and performance, and maintain-
ing client consistency when changing replicas.

1. Introduction

The performance of distributed services is becoming
increasingly variable. There are several reasons for this
trend. Over time, aggregate user interests tend to change
rapidly and unpredictably — a phenomenon known as
the slashdot effect — placing variable demands on end-
service and networking resources. Further, changing
patterns of demand in the underlying network also lead
to variable performance, even if the demand for the
service itself has not changed. Finally, users are be-
coming increasingly mobile; as they move, the cost of
accessing their home services change.

Manual administration of this flexible world is clearly
not up to the task. There are useful heuristics; for exam-
ple, one might place replicas on ecither side of a slow
network link. However, manual intervention is too cum-
bersome to keep pace with the rapid changes in demand
for services. Furthermore, resources are often dedicated
to trouble spots that do not persist; as load decreases,
those resources are not reclaimed.

Cluster-based, scalable services have been used to ad-
dress some of the sources of performance variability. In
this approach, services are deployed on a tightly coupled
cluster of machines. When one service discovers heavy
load, it replicates itself elsewhere on the cluster; this
replica is reclaimed when it is no longer needed. This
technique is very effective when the end service is the

bottleneck, but does not address other sources of vari-
ability.

In contrast, autonomous, pecr-replicated systems place
the responsibility for replication with the clients. In this
approach, each client caches a subset of the data in which
it is interested. It can then operate on that data locally,
exchanging its updates with another client when they
encounter one another. This addresses the question of
network-induced variations in performance, but has its
own difficultics. Because update propagation depends
on user mobility patterns, one cannot offer bounds on
update convergence or consistency. When a client over-
runs its local caching resources — a possibility on ex-
tremely lightweight, low power devices — it must fall
back to its original, remote service. Finally, updates that
are stored only on clients are more vulnerable compared
to those stored on a server.

Our goal is to provide the safety and bounded consis-
tency of server-based approaches with the performance
and convenience of client-based schemes. We propose
Jluid replication — the easy creation of replicas where
and when they are most needed — as a way to provide
these properties. In fluid replication, clients and services
monitor their observed performance; when it becomes
poor, a replica is created to either handle the increased
load or avoid the poor network path. Central to our ap-
proach is a new abstraction, the WayStation. WaySta-
tions are service nodes throughout the infrastructure that
provide remote resources on which to place replicas.

There are several challenges that must be met to realize
this vision. First, we must have a way to decide that we
need a new replica, and a mechanism to select a Way-
Station on which to host it. Once we have established a
replica, we choose consistency policies to balance the
consistency and performance seen when using that rep-
lica. Finally, we need a way to reclaim WayStation re-
sources in a way that preserves the consistency proper-
ties that clients expect.

2. Replica Creation

The fundamental abstraction in fluid replication is the
WayStation. WayStations are nodes within the infra-
structure that provide resources to users. These nodes
arc managed by their local administrative domain; there



is no notion of centralized administration. A WayStation
can potentially provide resources to any user, including
those from other domains.

Each client and server monitors the performance of re-
quests and responses. Clients measure end-to-end re-
sponse time of their requests; servers measure the time
requests spend under their control. The difference be-
tween these two measures the communication costs in-
volved in servicing the request.

If the server discovers that service time has grown unac-
ceptably, it creates a local replica. A local replica is
located close to the service, on the same cluster of ma-
chines. Client requests can be redirected by a front-end
service to provide load balancing, and the high-
bandwidth of the cluster can support strong consistency.
If consistency becomes expensive, data can be reparti-
tioned to avoid sharing across servers [4,6,18].

If the client discovers long communication times, it will
initiate a replica on a WayStation that is close to the cli-
ent — placed so that communication with it is inexpen-
sive — and able to absorb the added workload. We use a
mechanism called distance-based discovery to identify
candidate WayStations for this replica. Distance-based
discovery is a form of local, limited broadcast where the
notion of locality is defined by network costs.

In order to support distance-based discovery, routers
must estimate the costs — latency and bandwidth — to
traverse each of their links. A distance-based broadcast
gives latency and bandwidth limits. When a router sees
such a broadcast, it forwards it only across links that will
not cause the declared limits to be exceeded. The oper-
ating system delivers the payload and the cost incurred to
any receiving process.

To locate a nearby WayStation, a client sends a cost-
limited broadcast containing the name of the service it
wishes to replicate. A WayStation that receives this
query responds with its own name, the observed cost to
reach this WayStation, whether or not that service al-
ready exists on the WayStation, and an estimate of its
current load. The client can then select the closest,
lightly-loaded WayStation, giving preference to any that
have already begun to populate the requested replica.

The client then asks the chosen WayStation to create a
replica of the service in question. This involves no data
copying; the replica is populated lazily. However, in
most cases the WayStation must inform the home service
that the replica is being created. The home service uses
this information to set up any state that it will need to
manage replica consistency.

The home service specifies a default consistency policy,
but the client can ask for a different one if circumstances
warrant. Logically, each WayStation treats only to the
central service as its replica peer; the central service is

responsible for coordinating between WayStations. This
helps manage the complexity of a replication system
where replicas come and go at will. All WayStations
using the same consistency model are gathered together
into a replica class. This means that clients who ask for
strict consistency will see each others’ updates, but may
not see updates from clients that have asked for more
relaxed consistency.

3. Replica Operation

After establishing a replica on a WayStation, the client
directs all of its read and write requests to it. If a read
request arrives that cannot be satisfied, the WayStation
fetches the relevant data from the remote service on de-
mand. If there is known locality in the access pattern,
the WayStation can exploit it by prefetching data where
appropriate. For example, if a file system client asks for
the first block of a file, the WayStation may as well fetch
the rest, as it is likely to be needed soon [1]. Writes are
sent from the client to the WayStation as normal, but
may not be reflected to the home service immediately,
depending on the consistency policy. These writes form a
virtual log, though not all consistency require that the log
be stored explicitly.

Choosing the appropriate consistency policy is critical to
good client performance. This is because the client cre-
ated the replica in response to finding itself far from its
home service. This replica was placed close to the client,
and therefore is also very likely far from the home serv-
ice. Substantial communication between the WaySta-
tion and remote service will likely be the limit on per-
formance.

Consistency schemes can be described along two differ-
ent dimensions: what notion of consistency is provided
and how often consistency is maintained. As a side ef-
fect of maintaining consistency, fresh copies of data mi-
grate from replica to replica. Schemes can be further
classified by how aggressively they propagate data, and
whether or not clients offer hints as to how data should
be propagated.

There are three different levels of consistency we plan to
provide. The simplest, and least strict, is /ast-writer con-
sistency. In last-writer consistency, no effort is made to
ensure that conflicts do not occur, nor are conflicts de-
tected. Instead, during replica maintenance, each replica
notifies the other of any stale objects. If one replica has
a stale copy that is modified, that modification may su-
percede the intervening update at another site; the order
in which two replicas’ updates are applied is undefined.

Each last-writer replica maintains an update log, but uses
it only to decide what changes need to be reflected at its
peer, to avoid a full replica scan. Last-writer consistency



is useful for services that themselves do not offer a strict
notion of consistency, such as the Web[5] or NFS [11].

The next consistency level is optimistic [10,13]. In op-
timistic consistency, no effort is made to prevent incon-
sistent operations, but inconsistencies are detected and
not allowed to propagate further. When possible, incon-
sistencies are resolved automatically by the system or
application-specific code [14].

Optimistic replica sites keep operation logs, stamped
with logical clock time. During consistency mainte-
nance, the WayStation sends its log to the remote serv-
ice, which compares the two logs checking for seri-
alizability. Operations which can be serialized are ap-
plied. When an operation is judged to be non-
serializable, the service checks to see if the operation can
be resolved with either system knowledge of the data
structure or application-provided code.

The final consistency level is pessimistic. In pessimistic,
or strict, consistency, all operations are guaranteed to be
serializable. This guarantee is provided by requiring a
replica that wishes to update an object to first acquire
exclusive access to that object. This is similar to the
consistency provided by Sprite [1]. The performance
benefits of pessimistic consistency are derived from lo-
cality in access patterns; the more locality shown by up-
date traffic, the better pessimistic WayStations will per-
form compared to direct use of the remote service.

Pessimistic consistency must be performed aggressively,
prior to each update. However, optimistic and last-writer
schemes can vary the frequency with which they ex-
change updates. There are two considerations in select-
ing an interval. As update rates increase, updates should
be exchanged more frequently to reduce the chance of
seeing stale data or producing inconsistent updates.
However, as the network path between replica sites de-
grades, one might wish to defer replica maintenance to
benefit from locality of updates [1,13]. How to best bal-
ance these concerns is an open question. The degenerate
case — infinite time to exchange — can be used for data
known to be read-only, or data for which updates are not
shared.

When a replica site discovers that its peer has updated an
object that it stores, it can either invalidate its copy of the
object, or it can aggressively backfetch the object from
its peer. The best alternative depends on a number of
factors; the locality of update, the degree and frequency
of sharing, and the performance of the network path be-
tween replicas. The replication system can monitor some
of these, and pick the option that best fits current access
patterns. When applications have some special knowl-
edge of data access patterns, they can offer hints by tag-
ging data, similar to the annotations offered by the Mu-
nin distributed shared memory system [3].

The default consistency scheme for data is chosen by the
home service based on service semantics and expected
data access pattern. However, clients that use WaySta-
tion replicas can ask for different consistency mecha-
nisms when appropriate. Thus, each replica set can have
three replica classes: replicas with last-writer semantics,
optimistic replicas, and pessimistic replicas. This allows
WayStations to degrade their class when stronger se-
mantics is too expensive to provide. It also allows a cli-
ent to provide session semantics [20] when changing
from one WayStation to another. We claborate on this
notion in Section 4.

When conflicts arise between replica classes, the
stronger class always wins. For example, a replica with
a last-writer class and a pessimistic class will always
guarantee that the pessimistic class’ updates supercede
those of the last-writer class.

4. Replica Destruction

There are two reasons why a WayStation replica might
be destroyed. First, the client may case to be interested
in that replica’s data. Second, the client might move
closer to some other WayStation or the original service.

The former case is easy to deal with. WayStations can
monitor the usage statistics of their replicas. Those that
have not been used can be marked dormant as soon as
their changes have been reflected to the central service.
A busy WayStation can reclaim the resources of dormant
replicas when necessary.

The latter case is more difficult. When a client moves, it
must see client-consistent updates. If a client performs
an update, that update should be persistent from the point
of view of the client. Another way of saying this is that
no one should know more about a client’s updates than
the client does. In the Bayou terminology, this is known
as read-your-writes session semantics[20]. Pessimistic
consistency schemes provide client-consistency auto-
matically; more relaxed schemes may not.

When leaving a WayStation for another replica site, the
client asks the departure WayStation to discontinue rep-
lication on its behalf. Conceptually, the departure Way-
Station must then propagate all uncommitted updates to
the remote service before allowing the client to begin
using a new replica site. However, since this can be
quite expensive, there are several optimizations that can
be made.

The first optimization depends on the fact that the client
itself may have cached some of its most recent updates.
To capture this notion, the client maintains a /og suffix,
the log timestamp such that all updates stamped with
later times are known to the client. When notifying a
WayStation of its departure, the client sends its current



log suffix. The departure WayStation then is only re-
sponsible for immediately propagating pre-suffix up-
dates. It can purge post-suffix updates, and the client can
replay those updates at the arrival WayStation after being
given its release. Since the arrival WayStation was cho-
sen based on its proximity to the client, this replay op-
eration will be fast.

The second optimization is based on the observation that
the arrival WayStation may be closer to the departure
WayStation than the remote service. In such cases, the
departure WayStation is free to send its update log and
file contents to the arrival WayStation. This defers the
expense of committing changes to the remote service to
some time after the client changes replica sites.

The final optimization makes use of the consistency class
mechanism to defer even more work from the critical
path of replica handoff. Rather than actually propagate
changes, the departure WayStation can promote the con-
sistency scheme to pessimistic, and invalidate modified
replicas at the home service rather than force an update.
This exchange of status information is fast, and will al-
low data propagation to be overlapped with other client
operations. Note that the use of consistency classes al-
lows this change to affect only the arrival and departure
WayStations without penalizing replica sites that choose
weaker consistency guarantees.

5. Related Work

Grapevine [19] was the first distributed system that pro-
vided replication with weak consistency to provide good
performance and scalability. The observation that repli-
cas should be placed at cither end of a slow link led us to
ask the question how one might do so automatically.

Cluster-based, scalable distributed services [6,18] focus
on replicating data and services within a tightly coupled
cluster to adapt to changing client load. Typically, they
focus on soft-state replicas or provide a back-end storage
shared across the cluster. This minimizes the overhead
of consistency maintenance, though more recent systems
have cached dynamic content [4]. They provide good
scalability in cases where the end-service is the perform-
ance bottleneck.

Several distributed systems have used an optimistic con-
sistency scheme to provide file and database access to
mobile clients. Ficus [10] and Bayou [21] rely on a peer-
to-peer replication model. In this model, each node
stores a replica, and pairs of nodes exchange updates
when they encounter one another. This provides even-
tual consistency, but does not guarantee the rate of con-
vergence. JetFile [9] provides a similar peer-to-peer
model, but allows peers to find each other by 1P multi-
cast; each multicast is global rather than directed only to
nearby neighbors. In contrast to these peer-to-peer sys-

tems, Coda [13,16] provides a service-based replication
model, but allow clients to hold second-class replicas.
All of these systems store updates only on clients; these
are subject to decreased safety and security compared to
their server-stored counterparts.

Web caches take advantage of locality in HT TP requests
to provide better performance to clients using them [15].
These caches are limited to the consistency mechanisms
provided by the Web, and are passive elements; they do
not accept updates from clients.

Distributed shared memory systems take advantage of
locking mechanisms to optimize data movement and
invalidation [2,8,12]. Programs that correctly lock data
sec pessimistic consistency semantics. Munin allows
applications to annotate data to expose application
knowledge to further optimize data movement [3].

GeoCasting [ 17] provides broadcasts that are limited to a
physical arca. Distance-based discovery combines this
idea with schemes that estimate point-to-point network
costs [7] to broadcast based on network distance rather
than physical distance.

6. Conclusion

The cost of accessing distributed services is becoming
increasingly variable through changing popularity, use of
the underlying network, and client mobility. Cluster-
based services solve this problem when the end-service
is the source of variation, but are of limited use in other
situations. Peer-to-peer replication systems can also deal
with variation, but at a cost of lowered safety and un-
known bounds on replica convergence.

We propose to solve the problem of service variability
through fluid replication; the ability to create replicas
when and where they are most useful. Well-placed rep-
lica sites are found through distance-based discovery.
By taking into account service and client semantics, we
can adjust consistency schemes to achicve substantial
performance benefits.

In addition to consistency mechanisms and policies,
there are several other questions to address in the context
of this work. How can users put their faith in WaySta-
tions administered in a foreign domain? How can Way-
Stations discriminate between clients to which they do
and do not wish to provide service? How can failure of
WayStations and communication paths be integrated into
our model?

Our cffort is just beginning. We are currently experi-
menting with a prototype built on NFS with a few, sim-
ple consistency schemes to evaluate the potential benefits
of fluid replication. We then plan to apply the lessons
we learn there to the construction of a more complete
system.
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