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Abstract—Wide-area replicated storage systems are increas-
ingly popular, despite significant shortcomings. Such systems
allow for geographic placement of replicas near clients at a
global scale, but they struggle to balance consistent global
views with update performance. Eventual consistency—best-
effort propagation of updates—often fails to meet expectations
for update order. Causal consistency provides stronger ordering
guarantees, but it can order updates unnecessarily, resulting
in decreased performance.

Understanding which updates require ordering relies on
input from the application, as it alone knows the semantics of
its computation. In this paper, we report on our initial efforts
at providing such an application programming interface, and
we show through a simple workload the potential benefits and
costs of this approach. We also describe our future plans with
application-declared causality.

I. INTRODUCTION

Wide-area, replicated storage systems have found in-
creasing favor, but their use brings increasing frustration.
Geographic distribution provides a variety of fault-tolerance
properties. It is also possible to place replicas so that far-
flung clients have nearby access, which reduces latency for
many operations.

Unfortunately, wide-area distribution presents a funda-
mental challenge: the latency between replicas has material
implications for the underlying speed of the overall system.
Worse, the latency tail grows several orders of magnitude
larger than the average [1], and these long-tailed distribu-
tions create outsized impacts on user-visible services [2].

Such latency patterns have significant implications for
the consistency of updates in wide-area replicated storage
systems. Many systems simply offer eventual consistency,
allowing updates to arrive at each replica on a best-effort
basis [3], [4]. However, this creates frustration for developers
and users alike, as updates known at one replica are not seen
at another.

To rectify this, Eiger [5] added causal consistency to
an eventually-consistent wide-area replicated database. In
essence, any read or write that could have influenced a later
update is guaranteed to happen before that update at all
locations. This is an appealing model, as it captures many
programmer expectations for behavior, but it is not without
its flaws. In particular, the presence of some nodes with
orders-of-magnitude increases in latency significantly slows
the entire system due to its causality chain.

It is important to recognize that causality is, in many
cases, a stronger guarantee than is needed by the application
using wide-area replicated storage. First, most updates do
not need to be committed until they are externalized in some
way, because until that point no other entity is expecting the
update’s existence [6]. More generally, even though a write
could have influenced a later update, it is possible that it did
not actually do so. Such sitautions allow for out-of-order
commitments with no adverse effects to program behavior.

In order to provide for safe out-of-order commitments, the
underlying storage system needs to know what updates do
and do not influence later ones. This requires programmer
annotation in some form. Such annotation has been used to
allow mobile devices to use multiple connections [7], using
explicit atomicity and happens-before declarations. Earlier,
annotations of lockset coverage were used to improve the
performance of distributed shared memory systems [8].

In this paper, we describe our early attempts at adding
programmer-specific annotation for relaxing causal consis-
tency in wide-area replicated storage. We describe a simple
API for programmers to declare which prior writes do and
do not have causal influence, as well as the implementation
of that mechanism on top of Eiger’s more conservative
approach. We then use a simple workload to demonstrate
the potential benefits and pitfalls of such relaxations for
workloads that make use of it. In particular, we examine the
performance of the system in terms of latency and provide
upper and lower bounds for performance of the experimental
setup, which will support future experiments. We go on to
discuss our next steps, including plans for clients to use very
fine-grained control of potential dependency tracking.

II. BACKGROUND

An important design choice for a distributed system is
the consistency model. Several commonly discussed types
of consistency offer substantial guarantees. Linearizibility
effectively guarantees atomicity of each operation [9]. Se-
quential consistency requires that the final state appears as
though all the operations have been executed atomically
in some order; this order may be different than a wall-
clock ordering of the operations, but it remains acceptable,
provided the final state reflects the correct ordering of each
processor’s operations [10].



On the other end of the consistency spectrum, eventual
consistency is a very weak form of consistency that only
requires that all updates will appear everywhere eventu-
ally [11]. One common semantic model for distributed
systems is ACID: Atomicity, Consistency, Isolation, and
Durability [12]. By the CAP theorem [13], [14], ACID’s
design choices require the sacrifice of availability in ex-
change for partition-tolerance (since consistency is tauto-
logically part of ACID). In contrast to ACID, BASE is a
set of alternate semantics: Basically Available, Soft state,
and Eventually consistent [15]. BASE prioritizes availability
over consistency in a partition-tolerant database. This is the
model used by systems such as Cassandra [3], CouchDB [4],
and Dynamo [16].

One example of the current state of the art in large-
scale production databases is the Windows Azure Storage
service [17]. Azure uses a model where, by default, all reads
and writes are performed at one datacenter. A recent addition
to the service is a model that provides read-only access to
the redundant datacenters, which are only guaranteed to be
eventually consistent; all writes still have to be performed at
a single location. This model allows the storage system to
side-step the problem of updates happening simultaneously
in wide-spread locations.

Causal consistency is defined in terms of Lamport’s
happened-before relation [18]. This relation also implies
a notion of potential causality and is defined by three
conditions:

1) An operation performed by one process exists causally
after all previous operations performed by that process.

2) An operation reading a result of another process’s
operation exists causally after that operation.

3) Causality is transitive. Two events are considered con-
current if there is no transitive closure between them.

Lloyd et al. developed a causally consistent database
interface named COPS [19]; our system is built with the
follow-on work to COPS, Eiger [5]. COPS is a layer on
top of the eventually-consistent Cassandra [3] database. The
COPS client tracks operations such that it can transmit these
as a minimal set of dependencies with each write. The use
of these dependencies satisfies rule (2), as each read implies
that all future operations depend on that datum.

Cassandra’s logic ensures replication both within the local
datacenter and in remote datacenters. Under the COPS/Eiger
system, when a new write is to be replicated to other data-
centers, the origin datacenter transmits the data along with
the associated dependencies. When a datacenter receives a
propagated write, it first checks the attached dependency
data. If the dependencies are satisfied, the write is applied
to the datacenter. If not, the node that received the update
holds the incoming write until its dependencies are satisfied.
This ensures that each datacenter will always have a causally
consistent view of the data, since writes from “the future”,
by definition, are absent.

class Client {
write(key, value,

add_deps=true, return_deps=false,
custom_deps=null)

read(key,
add_deps=true, return_deps=false)

...
}

Figure 1. This simplified API provides add flags to indicate the desired
causality behavior. The custom_deps parameter allows for previously
acquired dependency objects to be passed into write methods to be added
to the final set of dependencies associated with a particular write.

III. DECLARING CAUSALITY

The model of always enforcing causal dependencies is
ideal in some applications, where all activity in a session is
going to be important. However, we can certainly envision
applications where this is not the case. Particularly, applica-
tions that read lots of data but then only interact with some
of it can be encumbered by the overhead of full causality.
This can be seen in most social networks: a user may see a
feed of other users’ posts, but they only favorite or comment
on one at a time. Were it the case that a given comment
action incurred dependencies on all other dynamic content
on the page, the availability of the new comment could
substantially decrease. Other datacenters would then have
to ensure that each and every piece of data the user could
have seen was present before processing the update with this
new comment. Additional risks and limits to scalability have
previously been explored in more detail by Bailis et al. [20].

The CAP Theorem establishes limitations and draw-
backs of demanding strict consistency [13], [14]. Partition-
tolerance is nearly a requirement for wide-area distributed
systems. Assuming that the system needs partition-tolerance,
the CAP Theorem requires that there be a trade-off between
consistency and availability. The intuitive solution is to only
use systems that are Pareto-optimal [21], [22] in terms of
these two properties, but few systems exist that provide more
consistency than eventual but less than causal or higher.

Our solution to the problem of expensive and potentially
unnecessary overhead is to provide application developers
with tools to manually specify which level of consistency
they want and when they want it. Using a modified API
such as that in Figure 1 provides a facility for manipulating
the causality-tracking subsystem of the client-side library.
Developers then have the option to specify how they want
to handle each read in terms of how and when dependencies
get added to a running set of dependencies in the client-side
library. This takes the form of a tunable “knob” with three
options:

Add Dependencies: Similar to the philosophy of Isard
and Birrell in the Automatic Mutual Exclusion system [23],



this system defaults to the most conservative setting. If the
developer does not specify the desired level of consistency,
the system will use causal+ consistency, exactly as imple-
mented by Eiger, which is the strongest consistency level in
our system. While this incurs overhead, it guarantees that
correctness will not be sacrified without the explicit consent
of the developer at an access-by-access level.

Ignore Dependencies: This mode instructs the system
to discard any dependencies that would be recorded during
a specific access. If a write has no dependencies, whether
by having read no data since the last write or by setting
all accesses to “Ignore” mode, the database will behave
identically to stock Cassandra: the write will be applied as
soon possible everywhere.

Custom Manage: This does not immediately record
the dependencies in the client’s running record. Instead, it
indicates to the function doing the access that it should
return any dependencies generated to the client software
(via the return_deps option in Figure 1). This provides
an opportunity for the client to implement more complex
logic regarding which writes depend on which read values.
Methods that consume this set of dependencies take a set of
user-specified dependencies (custom_deps in Figure 1),
which are combined with the a running record of dependen-
cies before being propagated to remote data centers.

This ability to manage dependencies at the application
level allows for accurate notation of semantic dependencies,
rather than a purely all-or-nothing approach. For example,
we can observe this feature’s use in many social network
applications. Users have a feed of posts from friends, and
each of which must be read from a data store. A user
may comment in an ongoing discussion on a post in their
feed. Intuitively, this specific comment should appear after
all the other comments they have viewed. In a causally
consistent system, this would be guaranteed; however, the
user’s comment would depend on every other post, like,
and advertisement that has been read from the database in
order to service their requests. Of course, in an eventually
consistent system, this would not be guaranteed: it would
only guarantee that their comment will appear globally—
eventually. With this ability to assign dependencies seman-
tically, only the dependencies from the post and comments
would be applied to the user’s new comment. Therefore, this
system would be causally consistent where and when it is
beneficial, but it would take advantage of the availability
that comes from eventual consistency for unrelated data.

For some applications, it would be difficult to manage
custom dependency logic due simply to the complexity
of the application. One possible solution would be for a
developer to construct a semantically meaningful abstraction
of the application’s dependencies. For example, a developer
of an application that is heavily oriented toward geographic
location, such as Yelp, could decide to add logic to partition
its dependency graphs based on region. The policy could

DC1

DC2 DC3

artificially delayed

no added delay

Figure 2. This three-datacenter experiment has a fully connected topology,
with one of the links having symmetric delay artifically introduced.

follow from a decision that a user’s activity related to
New York cannot impact data associated with Berlin. A
semantic dependency management layer could enforce this
policy by requiring that geographic information is supplied
for every operation, at which point a “Is same region?”
predicate would filter out potential dependencies that are
not in the same region. Through the use of a semantically
aware dependency-management facility, the complexity of
low-level dependency information can be abstracted away.

One concern for any distributed data store involves how
one handles concurrent writes to the same location. Even
with a fully causally consistent data store, there is still the
possibility of a conflict, e.g., two clients each write a new
value to key foo at roughly the same time in different
datacenters. Neither write has a happens-before relationship
with regard to the other, so the causality logic cannot resolve
this conflict. COPS, and thus our system, resolves conflicts
like these with the last-writer-wins rule [24], based on the
Lamport timestamp associated with each of the writes.

IV. EVALUATION

In our evaluation, we use a modified version of Eiger
which is itself based on Cassandra. We demonstrate the
potential performance problems that can arise by applying
dependency-tracking to all operations with an experiment.

The goal of this experiment is to demonstrate the direct
impact of dependency tracking. In this experiment, we have
three clients, one attached to each datacenter (DC) as shown
in Figure 2. The link between DCs 1 and 3 has artifical delay
applied. The first client starts the experiment by writing a
well-known key-value pair to its local datacenter. The second
client polls its DC (#2) for the key that will be written by the
first client. Once it sees it, it writes a second well-known
key-value pair to its local DC. If dependency tracking is
enabled, this write will have a dependency on the first key-
value pair, since it was read prior to the write in question.
This dependency data will be attached to the data structure
that conveys the update during propogation to remote DCs.
Finally, the third client waits for the second well-known



Table I
Summary statistics of the experiment’s response time (in ms) between

DC1 and DC3 with delay and dependency-tracking varied.

No Dependencies All Dependencies
Delay Mean Std. Dev. Mean Std. Dev.
50 ms 15.50 4.33 24.30 6.08
100 ms 15.75 4.18 57.75 5.34
200 ms 15.25 3.16 157.25 5.30

value to be propogated to its local DC and reports the time
at which it first observed this new value. We measured the
time between client 2 writing the second value and client 3
observing the second value.

We ran this experiment with varying delays applied to
the link between DC1 and DC3, as shown in Figure 2. For
each delay setting, we repeated the experiment 20 times.
Table I shows the summary statistics for each delay setting.
When we do not track dependencies, the average reponse
time is almost constant across different delay settings:
15.25 ms to 15.75 ms. When we track dependnecies, the
delay between DC1 and DC3 heavily affects the average
delay. One counterintuitive observation is that the average
delay is smaller than the artificial delay that we introduced.
In order to explore this phenomenon, we adjusted all the
links to have the same (large) amount of network lag. This
results in the response time being slightly larger than the
amount of lag, as expected, which strongly suggests that
DC2, using its two fast links, eventually “helps out” with
the propagation efforts.

To better understand the relationship between depen-
dencies and response time, in Figure 3, we present the
cumulative distribution of response times from the ex-
periment presented in Table I. The trials of all no-
dependency experiments have nearly identical distributions
of response times, regardless of network lag. When track-
ing all casuality-introduced dependencies, the distributions
follow similar trends as the no-dependency experiments; the
all-dependency trials are right-shifted due to network delay,
as expected.

This experiment demonstrates the cost of universal causal
consistency: even though the two key-value pairs were
unrelated, tracking all dependencies substantially increased
propagation time. However, if the writes were not ex-
plicity annotated for reduced consistency, tracking irrele-
vant dependencies—the fallback behavior of this system—
provides a fail-safe strategy.

V. RELATED WORK

Many different models of causal consistency have been
proposed to improve on eventual consistency. As there have
been papers that categorize them and summarize their dif-
ferences [25], [26], we do not discuss the entire consistency
space here. Instead, we focus on consistency management
techniques for planetary-scale distributed data stores which
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Figure 3. To better understand the relationship between dependency
tracking and response time, we present a CDF of the data from the
experiment described previously.

are then used to support cloud-based systems [27]. Our sys-
tem provides causal consistency as the Eiger system [5], but
we remove unnecessary dependency tracking based on hints
from application developers. Eiger itself was built upon the
foundation set by Lloyd et al. with the COPS system [19],
which provided wide-scale “causal+” consistency; however,
it did so without a rich data model or write-only transactions.
Eiger is an abstraction built on top of Cassandra [3], [28].
Cassandra can use either eventual or linearizible consistency;
when using eventual consistency, there are options referred
to as “consistency”, but they actually address durability.
Indeed, Cassandra does not provide a fine-grained con-
sistency control, while our system allows applications to
specify different consistency levels per operation. While
Eiger is a layer on top of Cassandra, Bailis et al. created
a shim layer that can provide causal consistency regardless
of any semantics in the underlying store. The key insight of
this shim (to achieve causal consistency without sacrificing
availability) is to buffer writes and make them visible to
shim clients only when a “causal cut” condition has been
satisfied. This shim layer performs well with explicitly
annotated consistency; however, its “metadata requirements
are prohibitive for full potential causality” [29]. Conversely,
our system is intended to provide causality by default, and
we only weaken it upon request. A competing proposal to
COPS is ChainReaction [30], which, in a departure from
COPS, does not require the underlying data store to provide
per-datacenter linearizability. ChainReaction uses replication
chains [31] to provide causal+ consistency for a distributed
key-value store with a similar interface to COPS. However,
it does not support a data model more complex than key-
value; Eiger provides the rich data model provided by the
underlying Cassandra data store.

Previous work by Bailis et al. [20] discusses causal



consistency and the potential problems that can arise in a
causally consistent distributed systems, particularly at scale.
They advocate the benefits of explicitly declaring potentially
causal relationships with weak consistency as the default.
This work is a follow-on to that discussion. We are pursuing
the evaluation of a system with such explicitly declared
causality. We deviate from the recommendation to fall back
to eventual consistency when there are no explicit causality
relationships expressed for performance reasons; instead,
we fall-back to a more conservative option: full causal
consistency. This ensures causally correct behavior unless
the developer explicitly opts-in to the fewer guarantees
provided by eventual consistency.

Our system is not the first that allows different lev-
els of consistency for wide-area distributed systems.
Kraska et al. [32] allows developers to define consistency
guarantees for files. Their prototype was implemented on
top of Amazon’s S3 service, which provides eventual con-
sistency. The key difference is the unit of consistency in the
two systems: their system requires a file to have a fixed con-
sistency level, while our system allows the client to change
the consistency requirement for each operation on key-value
pairs. Li et al. [33] provide the option for operations to be
treated either as “Blue”—eventually consistent—or “Red”—
serialized with respect to all other Red operations—to enable
developers to express the level of consistency that applica-
tion semantics require. Our system certainly provides a mode
for eventual consistency and one for stronger consistency
like the RedBlue system. In the parlance of their work, the
custom-management mode in our system provides for the
spectrum of modes between Blue and Red.

Before the emergence of the cloud pattern of distributed
systems, similar efforts on replica consistency management
were motivated by mobile clients. The research community
acknowledged the need to relax strong consistency to sup-
port mobile clients who temporarily become unavailable.
Kordale and Ahamad [34] provided a design for supporting
multiple levels of consistency, with causal consistency being
the weakest. In contrast, our system provides multiple levels
of consistency, with causal consistency being the strongest.
Hara and Madria [35], [36] proposed multiple consistency
levels for replica consistency in mobile ad-hoc networks.
Through simulation, they demonstrated the effect of quorum
size on read/write success with mobile clients.

VI. CONCLUSION

We have described our initial efforts at providing an ap-
plication programming interface for distributed systems that
accepts information regarding the need—or lack thereof—
of causality with respect to previous operations. We have
demonstrated some performance pitfalls of universal causal
consistency in a distributed data store, but we have provided
semantics to improve performance while still maintaining a
causally consistent view for all clients.

Going forward, we want to explore the potential practical
uses for causal consistency in web-scale databases. Using
real-world workflow traces will provide an opportunity to
discuss how this model of programming can be productively
applied to production systems. We also plan to explore
fine-grained dependency tracking in more depth. Certainly,
if a programming feature is sufficiently burdensome for
developers to use, it will remain unused. We will examine
the burden that would be placed on developers to take full
advantage of this fine-grained dependency tracking feature.

Wide-area distributed systems currently struggle provide
the needed update performance and consistent views that
are appropriate for each application—and each subsystem of
each application. A system that allows for program-specific
annotation greatly increases the flexibility of data stores,
enabling new tradeoffs of consistency and availability.
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